179 research outputs found

    Study Protocol. ECSSIT – Elective Caesarean Section Syntocinon® Infusion Trial. A multi-centre randomised controlled trial of oxytocin (Syntocinon®) 5 IU bolus and placebo infusion versus oxytocin 5 IU bolus and 40 IU infusion for the control of blood loss at elective caesarean section

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caesarean section is one of the most commonly performed major operations in women throughout the world. Rates are escalating, with studies from the United States of America, the United Kingdom, China and the Republic of Ireland reporting rates between 20% and 25%. Operative morbidity includes haemorrhage, anaemia, blood transfusion and in severe cases, maternal death.</p> <p>The value of routine oxytocics in the third stage of vaginal birth has been well established and it has been assumed that these benefits apply to caesarean delivery as well. A slow bolus dose of oxytocin is recommended following delivery of the baby at caesarean section. Some clinicians use an additional infusion of oxytocin for a further period following the procedure. Intravenous oxytocin has a very short half-life (4–10 minutes) therefore the potential advantage of an oxytocin infusion is that it maintains uterine contractility throughout the surgical procedure and immediate postpartum period, when most primary haemorrhages occur. The few trials to date addressing the optimal approach to preventing haemorrhage at caesarean section have been under-powered to evaluate clinically important outcomes. There has been no trial to date comparing the use of an intravenous slow bolus of oxytocin versus an oxytocin bolus and infusion.</p> <p>Methods and design</p> <p>A multi-centre randomised controlled trial is proposed. The study will take place in five large maternity units in Ireland with collaboration between academics and clinicians in the disciplines of obstetrics and anaesthetics. It will involve 2000 women undergoing elective caesarean section after 36 weeks gestation. The main outcome measure will be major haemorrhage (blood loss >1000 ml). A study involving 2000 women will have 80% power to detect a 36% relative change in the risk of major haemorrhage with two-sided 5% alpha.</p> <p>Discussion</p> <p>It is both important and timely that we evaluate the optimal approach to the management of the third stage at elective caesarean section. Safe operative delivery is now a priority and a reality for many pregnant women. Obstetricians, obstetric anaesthetists, midwives and pregnant women need high quality evidence on which to base management approaches. The overall aim is to reduce maternal haemorrhagic morbidity and its attendant risks at elective caesarean section.</p> <p>Trial registration</p> <p>number: ISRCTN17813715</p

    Geographic distribution at subspecies resolution level: closely related Rhodopirellula species in European coastal sediments.

    Get PDF
    Members of the marine genus Rhodopirellula are attached living bacteria and studies based on cultured Rhodopirellula strains suggested that three closely related species R. baltica, 'R. europaea' and 'R. islandica' have a limited geographic distribution in Europe. To address this hypothesis, we developed a nested PCR for a single gene copy detection of a partial acetyl CoA synthetase (acsA) from intertidal sediments collected all around Europe. Furthermore, we performed growth experiments in a range of temperature, salinity and light conditions. A combination of Basic Local Alignment Search Tool (BLAST) and Minimum Entropy Decomposition (MED) was used to analyze the sequences with the aim to explore the geographical distribution of the species and subspecies. MED has been mainly used for the analysis of the 16S rRNA gene and here we propose a protocol for the analysis of protein-coding genes taking into account the degeneracy of the codons and a possible overestimation of functional diversity. The high-resolution analysis revealed differences in the intraspecies community structure in different geographic regions. However, we found all three species present in all regions sampled and in agreement with growth experiments we demonstrated that Rhodopirellula species do not have a limited geographic distribution in Europe

    Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes

    Get PDF
    Vascular endothelial growth factor (VEGF) inhibits differentiation and maturation of dendritic cells (DC), suggesting a potential immunosuppressive role for this proangiogenic factor. Bevacizumab, sorafenib and sunitinib target VEGF-mediated angiogenesis and are active against several types of cancer, but their effects on the immune system are poorly understood. In this study, VEGF and supernatants of renal carcinoma cell lines cultured under hypoxia were found to alter the differentiation of human monocytes to DC. Resulting DC showed impaired activity, as assessed by the alloreactive mixed T-lymphocyte reaction. Bevacizumab and sorafenib, but not sunitinib, reversed the inhibitory effects of VEGF, but not of those mediated by tumour supernatants. Dendritic cells matured under the influence of VEGF expressed less human leukocyte antigen-DR (HLA-DR) and CD86, and this effect was restored by bevacizumab and sorafenib. Finally, tumour-cell supernatants decreased interleukin-12 (IL-12) production by mature DC, and such inhibition was not restored by any of the tested drugs, delivered either as single agents or in combination. The deleterious effects of tumour-cell supernatants were mainly mediated by thermostable molecules distinct from VEGF. These results indicate that inhibition of the differentiation of monocytes to DC is a multifactorial effect, and that they support the development of combinations of angiogenesis inhibitors with immunological modulators

    Plasmacytoid DC from Aged Mice Down-Regulate CD8 T Cell Responses by Inhibiting cDC Maturation after Encephalitozoon cuniculi Infection

    Get PDF
    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations

    Ubiquitous LEA29Y Expression Blocks T Cell Co-Stimulation but Permits Sexual Reproduction in Genetically Modified Pigs

    Get PDF
    We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action

    A Honey Bee Hexamerin, HEX 70a, Is Likely to Play an Intranuclear Role in Developing and Mature Ovarioles and Testioles

    Get PDF
    Insect hexamerins have long been known as storage proteins that are massively synthesized by the larval fat body and secreted into hemolymph. Following the larval-to-pupal molt, hexamerins are sequestered by the fat body via receptor-mediated endocytosis, broken up, and used as amino acid resources for metamorphosis. In the honey bee, the transcript and protein subunit of a hexamerin, HEX 70a, were also detected in ovaries and testes. Aiming to identify the subcellular localization of HEX 70a in the female and male gonads, we used a specific antibody in whole mount preparations of ovaries and testes for analysis by confocal laser-scanning microscopy. Intranuclear HEX 70a foci were evidenced in germ and somatic cells of ovarioles and testioles of pharate-adult workers and drones, suggesting a regulatory or structural role. Following injection of the thymidine analog EdU we observed co-labeling with HEX 70a in ovariole cell nuclei, inferring possible HEX 70a involvement in cell proliferation. Further support to this hypothesis came from an injection of anti-HEX 70a into newly ecdysed queen pupae where it had a negative effect on ovariole thickening. HEX 70a foci were also detected in ovarioles of egg laying queens, particularly in the nuclei of the highly polyploid nurse cells and in proliferating follicle cells. Additional roles for this storage protein are indicated by the detection of nuclear HEX 70a foci in post-meiotic spermatids and spermatozoa. Taken together, these results imply undescribed roles for HEX 70a in the developing gonads of the honey bee and raise the possibility that other hexamerins may also have tissue specific functions

    Serum indoleamine 2,3-dioxygenase activity is associated with reduced immunogenicity following vaccination with MVA85A.

    Get PDF
    BackgroundThere is an urgent need for improved vaccines to protect against tuberculosis. The currently available vaccine Bacille Calmette-Guerin (BCG) has varying immunogenicity and efficacy across different populations for reasons not clearly understood. MVA85A is a modified vaccinia virus expressing antigen 85A from Mycobacterium tuberculosis which has been in clinical development since 2002 as a candidate vaccine to boost BCG-induced protection. A recent efficacy trial in South African infants failed to demonstrate enhancement of protection over BCG alone. The immunogenicity was lower than that seen in UK trials.The enzyme Indoleamine 2,3-dioxygenase (IDO) catalyses the first and rate-limiting step in the breakdown of the essential amino acid tryptophan. T cells are dependent on tryptophan and IDO activity suppresses T-cell proliferation and function.MethodsUsing samples collected during phase I trials with MVA85A across the UK and South Africa we have investigated the relationship between vaccine immunogenicity and IDO using IFN-¿ ELISPOT, qPCR and liquid chromatography mass spectrometry.ResultsWe demonstrate an IFN-¿ dependent increase in IDO mRNA expression in peripheral blood mononuclear cells (PBMC) following MVA85A vaccination in UK subjects. IDO mRNA correlates positively with the IFN-¿ ELISPOT response indicating that vaccine specific induction of IDO in PBMC is unlikely to limit the development of vaccine specific immunity. IDO activity in the serum of volunteers from the UK and South Africa was also assessed. There was no change in serum IDO activity following MVA85A vaccination. However, we observed higher baseline IDO activity in South African volunteers when compared to UK volunteers. In both UK and South African serum samples, baseline IDO activity negatively correlated with vaccine-specific IFN-¿ responses, suggesting that IDO activity may impair the generation of a CD4+ T cell memory response.ConclusionsBaseline IDO activity was higher in South African volunteers when compared to UK volunteers, which may represent a potential mechanism for the observed variation in vaccine immunogenicity in South African and UK populations and may have important implications for future vaccination strategies.Trial registrationTrials are registered at ClinicalTrials.gov; UK cohort NCT00427830, UK LTBI cohort NCT00456183, South African cohort NCT00460590, South African LTBI cohort NCT00480558

    Strategies to Target Tumor Immunosuppression

    Get PDF
    The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity
    corecore