429 research outputs found

    Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine

    Get PDF
    Grapevine is an extremely important crop worldwide. In southern Europe, post-flowering phases of the growth cycle can occur under high temperatures, excessive light, and drought conditions at soil and/or atmospheric level. In this study, we subjected greenhouse grown grapevine, variety Aragonez, to two individual abiotic stresses, water deficit stress (WDS), and heat stress (HS). The adaptation of plants to stress is a complex response triggered by cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Using microarrays, we analyzed the leaf transcriptomic profile of the grapevine plants. Photosynthesis measurements verified that the plants were significantly affected by the stresses applied. Leaf gene expression was obtained using a high-throughput transcriptomic grapevine array, the 23K custom-made Affymetrix Vitis GeneChip. We identified 1,594 genes as differentially expressed between control and treatments and grouped them into ten major functional categories using MapMan software. The transcriptome of Aragonez was more significantly affected by HS when compared with WDS. The number of genes coding for heat-shock proteins and transcription factors expressed solely in response to HS suggesting their expression as unique signatures of HS. However, a cross-talk between the response pathways to both stresses was observed at the level of AP2/ERF transcription factors

    Responses of zostera marina and cymodocea nodosa to light-limitation stress

    Get PDF
    The effects of light-limitation stress were investigated in natural stands of the seagrasses Zostera marina and Cymodocea nodosa in Ria Formosa coastal lagoon, southern Portugal. Three levels of light attenuation were imposed for 3 weeks in two adjacent meadows (2–3 m depth), each dominated by one species. The response of photosynthesis to light was determined with oxygen electrodes. Chlorophylls and carotenoids were determined by high-pressure liquid chromatography (HPLC). Soluble protein, carbohydrates, malondialdehyde and phenol contents were also analysed. Both species showed evident signs of photoacclimation. Their maximum photosynthetic rates were significantly reduced with shading. Ratios between specific light harvesting carotenoids and the epoxidation state of xanthophyll cycle carotenoids revealed significantly higher light harvesting efficiency of C. nodosa, a competitive advantage in a low light environment. The contents of both soluble sugars and starch were considerably lower in Z. marina plants, particularly in the rhizomes, decreasing even further with shading. The different carbohydrate energy storage strategies found between the two species clearly favour C. nodosa's resilience to light deprivation, a condition enhanced by its intrinsic arrangement of the pigment pool. On the other hand, Z. marina revealed a lower tolerance to light reduction, mostly due to a less plastic arrangement of the pigment pool and lower carbohydrate storage. Our findings indicate that Z. marina is close to a light-mediated ecophysiological threshold in Ria Formosa

    Glycolate Oxidase Isozymes Are Coordinately Controlled by GLO1 and GLO4 in Rice

    Get PDF
    Glycolate oxidase (GLO) is a key enzyme in photorespiratory metabolism. Four putative GLO genes were identified in the rice genome, but how each gene member contributes to GLO activities, particularly to its isozyme profile, is not well understood. In this study, we analyzed how each gene plays a role in isozyme formation and enzymatic activities in both yeast cells and rice tissues. Five GLO isozymes were detected in rice leaves. GLO1 and GLO4 are predominately expressed in rice leaves, while GLO3 and GLO5 are mainly expressed in the root. Enzymatic assays showed that all yeast-expressed GLO members except GLO5 have enzymatic activities. Further analyses suggested that GLO1, GLO3 and GLO4 interacted with each other, but no interactions were observed for GLO5. GLO1/GLO4 co-expressed in yeast exhibited the same isozyme pattern as that from rice leaves. When either GLO1 or GLO4 was silenced, expressions of both genes were simultaneously suppressed and most of the GLO activities were lost, and consistent with this observation, little GLO isozyme protein was detected in the silenced plants. In contrast, no observable effect was detected when GLO3 was suppressed. Comparative analyses between the GLO isoforms expressed in yeast and the isozymes from rice leaves indicated that two of the five isozymes are homo-oligomers composed of either GLO1 or GLO4, and the other three are hetero-oligomers composed of both GLO1 and GLO4. Our current data suggest that GLO isozymes are coordinately controlled by GLO1 and GLO4 in rice, and the existence of GLO isozymes and GLO molecular and compositional complexities implicate potential novel roles for GLO in plants

    Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.)

    Full text link
    [EN] Nerium oleander is an ornamental species of high aesthetic value, grown in arid and semi- arid regions because of its drought tolerance, which is also considered as relatively resistant to salt; yet the biochemical and molecular mechanisms underlying oleander¿s stress toler- ance remain largely unknown. To investigate these mechanisms, one-year-old oleander seedlings were exposed to 15 and 30 days of treatment with increasing salt concentratio ns, up to 800 mM NaCl, and to complete withholding of irrigation; growth parameters and bio- chemical markers characteristic of conserved stress-response pathways were then deter- mined in stressed and control plants. Strong water deficit and salt stress both caused inhibition of growth, degradation of photosynthetic pigments, a slight (but statistically signifi- cant) increase in the leaf levels of specific osmolytes, and induction of oxidative stress¿as indicated by the accumulation of malondialdehyde (MDA), a reliable oxidative stress marker ¿accompanied by increases in the levels of total phenolic compounds and antioxidant fla- vonoids and in the specific activities of ascorbate peroxidase (APX) and glutathione reduc- tase (GR). High salinity, in addition, induced accumulation of Na + and Cl - in roots and leaves and the activation of superoxide dismutase (SOD) and catalase (CAT) activities. Apart from anatomical adaptations that protect oleander from leaf dehydration at moderate levels of stress, our results indicate that tolerance of this species to salinity and water deficit is based on the constitutive accumulation in leaves of high concentratio ns of soluble carbohydrates and, to a lesser extent, of glycine betaine, and in the activation of the aforementioned antiox- idant systems. Moreover, regarding specifically salt stress, mechanisms efficiently blocking transport of toxic ions from the roots to the aerial parts of the plant appear to contribute to a large extent to tolerance in Nerium oleanderThis work was financed by internal funds of the Polytechnic University of Valencia to Monica Boscaiu and Oscar Vicente. Dinesh Kumar’s stay in Valencia was financed by a NAMASTE fellowship from the European Union, and Mohamad Al Hassan was a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium).Kumar, D.; Al Hassan, M.; Naranjo Olivero, MA.; Agrawal, V.; Boscaiu, M.; Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE. 12(9). doi:10.1371/journal.pone.0185017Se018501712
    • …
    corecore