101 research outputs found

    Expression of the myosin heavy chain IIB gene in porcine skeletal muscle: the role of the CArG-box promoter response element

    Get PDF
    Due to its similarity to humans, the pig is increasingly being considered as a good animal model for studying a range of human diseases. Despite their physiological similarities, differential expression of the myosin heavy chain (MyHC) IIB gene (MYH4) exists in the skeletal muscles of these species, which is associated with a different muscle phenotype. The expression of different MyHC isoforms is a critical determinant of the contractile and metabolic characteristics of the muscle fibre. We aimed to elucidate whether a genomic mechanism was responsible for the drastically different expression of MYH4 between pigs and humans, thus improving our understanding of the pig as a model for human skeletal muscle research. We utilized approximately 1 kb of the MYH4 promoter from a domestic pig and a human (which do and do not express MYH4, respectively) to elucidate the role of the promoter sequence in regulating the high expression of MYH4 in porcine skeletal muscle. We identified a 3 bp genomic difference within the proximal CArG and Ebox region of the MYH4 promoter of pigs and humans that dictates the differential activity of these promoters during myogenesis. Subtle species-specific genomic differences within the CArG-box region caused differential protein-DNA interactions at this site and is likely accountable for the differential MYH4 promoter activity between pigs and humans. We propose that the genomic differences identified herein explain the differential activity of the MYH4 promoter of pigs and humans, which may contribute to the differential expression patterns displayed in these otherwise physiologically similar mammals. Further, we report that both the pig and human MYH4 promoters can be induced by MyoD over- expression, but the capacity to activate the MYH4 promoter is largely influenced by the 3 bp difference located within the CArG-box region of the proximal MYH4 promoter

    Alternative Sigma Factor σH Modulates Prophage Integration and Excision in Staphylococcus aureus

    Get PDF
    The prophage is one of the most important components of variable regions in bacterial genomes. Some prophages carry additional genes that may enhance the toxicity and survival ability of their host bacteria. This phenomenon is predominant in Staphylococcus aureus, a very common human pathogen. Bioinformatics analysis of several staphylococcal prophages revealed a highly conserved 40-bp untranslated region upstream of the int gene. A small transcript encoding phage integrase was identified to be initiated from the region, demonstrating that the untranslated region contained a promoter for int. No typical recognition sequence for either σA or σB was identified in the 40-bp region. Experiments both in vitro and in vivo demonstrated that σH recognized the promoter and directed transcription. Genetic deletion of sigH altered the int expression, and subsequently, the excision proportion of prophage DNAs. Phage assays further showed that sigH affected the ability of spontaneous lysis and lysogenization in S. aureus, suggesting that sigH plays a role in stabilizing the lysogenic state. These findings revealed a novel mechanism of prophage integration specifically regulated by a host-source alternative sigma factor. This mechanism suggests a co-evolution strategy of staphylococcal prophages and their host bacteria

    The Mechanism of Antifungal Action of Essential Oil from Dill (Anethum graveolens L.) on Aspergillus flavus

    Get PDF
    The essential oil extracted from the seeds of dill (Anethum graveolens L.) was demonstrated in this study as a potential source of an eco-friendly antifungal agent. To elucidate the mechanism of the antifungal action further, the effect of the essential oil on the plasma membrane and mitochondria of Aspergillus flavus was investigated. The lesion in the plasma membrane was detected through flow cytometry and further verified through the inhibition of ergosterol synthesis. The essential oil caused morphological changes in the cells of A. flavus and a reduction in the ergosterol quantity. Moreover, mitochondrial membrane potential (MMP), acidification of external medium, and mitochondrial ATPase and dehydrogenase activities were detected. The reactive oxygen species (ROS) accumulation was also examined through fluorometric assay. Exposure to dill oil resulted in an elevation of MMP, and in the suppression of the glucose-induced decrease in external pH at 4 µl/ml. Decreased ATPase and dehydrogenase activities in A. flavus cells were also observed in a dose-dependent manner. The above dysfunctions of the mitochondria caused ROS accumulation in A. flavus. A reduction in cell viability was prevented through the addition of L-cysteine, which indicates that ROS is an important mediator of the antifungal action of dill oil. In summary, the antifungal activity of dill oil results from its ability to disrupt the permeability barrier of the plasma membrane and from the mitochondrial dysfunction-induced ROS accumulation in A. flavus

    The effect of acceptance and commitment therapy on insomnia and sleep quality: A systematic review

    Get PDF
    Background Acceptance and Commitment Therapy (ACT), as a type of behavioral therapy, attempts to respond to changes in people’s performance and their relationship to events. ACT can affect sleep quality by providing techniques to enhance the flexibility of patients’ thoughts, yet maintaining mindfullness. Therefore, for the first time, a systematic review on the effects of ACT on sleep quality has been conducted. Methods This systematic review was performed to determine the effect of ACT on insomnia and sleep quality. To collect articles, the PubMed, Web of Science (WOS), Cochrane library, Embase, Scopus, Science Direct, ProQuest, Mag Iran, Irandoc, and Google Scholar databases were searched, without a lower time-limit, and until April 2020. Results Related articles were derived from 9 research repositories, with no lower time-limit and until April 2020. After assessing 1409 collected studies, 278 repetitive studies were excluded. Moreover, following the primary and secondary evaluations of the remaining articles, 1112 other studies were removed, and finally a total of 19 intervention studies were included in the systematic review process. Within the remaining articles, a sample of 1577 people had been assessed for insomnia and sleep quality. Conclusion The results of this study indicate that ACT has a significant effect on primary and comorbid insomnia and sleep quality, and therefore, it can be used as an appropriate treatment method to control and improve insomnia

    Syndecan-4 Is Essential for Development of Concentric Myocardial Hypertrophy via Stretch-Induced Activation of the Calcineurin-NFAT Pathway

    Get PDF
    Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extracellular matrix proteins to the cytoskeleton, is an important signal transducer in cardiomyocytes during development of concentric myocardial hypertrophy following pressure overload. Echocardiographic, histochemical and cardiomyocyte size measurements showed that syndecan-4−/− mice did not develop concentric myocardial hypertrophy as found in wild-type mice, but rather left ventricular dilatation and dysfunction following pressure overload. Protein and gene expression analyses revealed diminished activation of the central, pro-hypertrophic calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway. Cardiomyocytes from syndecan-4−/−-NFAT-luciferase reporter mice subjected to cyclic mechanical stretch, a hypertrophic stimulus, showed minimal activation of NFAT (1.6-fold) compared to 5.8-fold increase in NFAT-luciferase control cardiomyocytes. Accordingly, overexpression of syndecan-4 or introducing a cell-permeable membrane-targeted syndecan-4 polypeptide (gain of function) activated NFATc4 in vitro. Pull-down experiments demonstrated a direct intracellular syndecan-4-calcineurin interaction. This interaction and activation of NFAT were increased by dephosphorylation of serine 179 (pS179) in syndecan-4. During pressure overload, phosphorylation of syndecan-4 was decreased, and association between syndecan-4, calcineurin and its co-activator calmodulin increased. Moreover, calcineurin dephosphorylated pS179, indicating that calcineurin regulates its own binding and activation. Finally, patients with hypertrophic myocardium due to aortic stenosis had increased syndecan-4 levels with decreased pS179 which was associated with increased NFAT activation. In conclusion, our data show that syndecan-4 is essential for compensatory hypertrophy in the pressure overloaded heart. Specifically, syndecan-4 regulates stretch-induced activation of the calcineurin-NFAT pathway in cardiomyocytes. Thus, our data suggest that manipulation of syndecan-4 may provide an option for therapeutic modulation of calcineurin-NFAT signaling

    Cardiac regeneration: different cells same goal

    Get PDF
    Cardiovascular diseases are the leading cause of mortality, morbidity, hospitalization and impaired quality of life. In most, if not all, pathologic cardiac ischemia ensues triggering a succession of events leading to massive death of cardiomyocytes, fibroblast and extracellular matrix accumulation, cardiomyocyte hypertrophy which culminates in heart failure and eventually death. Though current pharmacological treatment is able to delay the succession of events and as a consequence the development of heart failure, the only currently available and effective treatment of end-stage heart failure is heart transplantation. However, donor heart availability and immunorejection upon transplantation seriously limit the applicability. Cardiac regeneration could provide a solution, making real a dream of both scientist and clinician in the previous century and ending an ongoing challenge for this century. In this review, we present a basic overview of the various cell types that have been used in both the clinical and research setting with respect to myocardial differentiation

    State of the Art Review: Emerging Therapies: The Use of Insulin Sensitizers in the Treatment of Adolescents with Polycystic Ovary Syndrome (PCOS)

    Get PDF
    PCOS, a heterogeneous disorder characterized by cystic ovarian morphology, androgen excess, and/or irregular periods, emerges during or shortly after puberty. Peri- and post-pubertal obesity, insulin resistance and consequent hyperinsulinemia are highly prevalent co-morbidities of PCOS and promote an ongoing state of excess androgen. Given the relationship of insulin to androgen excess, reduction of insulin secretion and/or improvement of its action at target tissues offer the possibility of improving the physical stigmata of androgen excess by correction of the reproductive dysfunction and preventing metabolic derangements from becoming entrenched. While lifestyle changes that concentrate on behavioral, dietary and exercise regimens should be considered as first line therapy for weight reduction and normalization of insulin levels in adolescents with PCOS, several therapeutic options are available and in wide use, including oral contraceptives, metformin, thiazolidenediones and spironolactone. Overwhelmingly, the data on the safety and efficacy of these medications derive from the adult PCOS literature. Despite the paucity of randomized control trials to adequately evaluate these modalities in adolescents, their use, particularly that of metformin, has gained popularity in the pediatric endocrine community. In this article, we present an overview of the use of insulin sensitizing medications in PCOS and review both the adult and (where available) adolescent literature, focusing specifically on the use of metformin in both mono- and combination therapy

    Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction

    Get PDF
    INTRODUCTION: Chemokine-directed migration is crucial for homing of regenerative cells to the infarcted heart and correlates with outcomes of cell therapy trials. Hence, transplantation of chemokine-responsive bone marrow cells may be ideal for treatment of myocardial ischemia. To verify the therapeutic activity of bone marrow mononuclear cells (BM-MNCs) selected by in vitro migration towards the chemokine stromal cell-derived factor-1 (SDF-1) in a mouse model of myocardial infarction (MI), we used BM-MNCs from patients with previous large MI recruited in the TransACT-1&2 cell therapy trials. METHODS: Unfractioned BM-MNCs, SDF-1-responsive, and SDF-1-nonresponsive BM-MNCs isolated by patients recruited in the TransACT-1&2 cell therapy trials were tested in Matrigel assay to evaluate angiogenic potential. Secretome and antigenic profile were characterized by flow cytometry. Angiogenin expression was measured by RT-PCR. Cells groups were also intramyocardially injected in an in vivo model of MI (8-week-old immune deficient CD1-FOXN1(nu/nu) mice). Echocardiography and hemodynamic measurements were performed before and at 14 days post-MI. Arterioles and capillaries density, infiltration of inflammatory cells, interstitial fibrosis, and cardiomyocyte proliferation and apoptosis were assessed by immunohistochemistry. RESULTS: In vitro migration enriched for monocytes, while CD34(+) and CD133(+) cells and T lymphocytes remained mainly confined in the non-migrated fraction. Unfractioned total BM-MNCs promoted angiogenesis on Matrigel more efficiently than migrated or non-migrated cells. In mice with induced MI, intramyocardial injection of unfractionated or migrated BM-MNCs was more effective in preserving cardiac contractility and pressure indexes than vehicle or non-migrated BM-MNCs. Moreover, unfractioned BM-MNCs enhanced neovascularization, whereas the migrated fraction was unique in reducing the infarct size and interstitial fibrosis. In vitro studies on isolated cardiomyocytes suggest participation of angiogenin, a secreted ribonuclease that inhibits protein translation under stress conditions, in promotion of cardiomyocyte survival by migrated BM-MNCs. CONCLUSIONS: Transplantation of bone marrow cells helps post-MI healing through distinct actions on vascular cells and cardiomyocytes. In addition, the SDF-1-responsive fraction is enriched with angiogenin-expressing monocytes, which may improve cardiac recovery through activation of cardiomyocyte response to stress. Identification of factors linking migratory and therapeutic outcomes could help refine regenerative approaches. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-015-0028-y) contains supplementary material, which is available to authorized users

    RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination

    Get PDF
    Background TRIM25 is a novel RNA-binding protein and a member of the Tripartite Motif (TRIM) family of E3 ubiquitin ligases, which plays a pivotal role in the innate immune response. However, there is scarce knowledge about its RNA-related roles in cell biology. Furthermore, its RNA-binding domain has not been characterized. Results Here, we reveal that the RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain, which we postulate to be a novel RNA-binding domain. Using CLIP-seq and SILAC-based co-immunoprecipitation assays, we uncover TRIM25’s endogenous RNA targets and protein binding partners. We demonstrate that TRIM25 controls the levels of Zinc Finger Antiviral Protein (ZAP). Finally, we show that the RNA-binding activity of TRIM25 is important for its ubiquitin ligase activity towards itself (autoubiquitination) and its physiologically relevant target ZAP. Conclusions Our results suggest that many other proteins with the PRY/SPRY domain could have yet uncharacterized RNA-binding potential. Together, our data reveal new insights into the molecular roles and characteristics of RNA-binding E3 ubiquitin ligases and demonstrate that RNA could be an essential factor in their enzymatic activity
    corecore