10 research outputs found

    A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    Get PDF
    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite

    Small-molecule-based regulation of RNA-delivered circuits in mammalian cells

    No full text
    Synthetic mRNA is an attractive vehicle for gene therapies because of its transient nature and improved safety profile over DNA. However, unlike DNA, broadly applicable methods to control expression from mRNA are lacking. Here we describe a platform for small-molecule-based regulation of expression from modified RNA (modRNA) and self-replicating RNA (replicon) delivered to mammalian cells. Specifically, we engineer small-molecule-responsive RNA binding proteins to control expression of proteins from RNA-encoded genetic circuits. Coupled with specific modRNA dosages or engineered elements from a replicon, including a subgenomic promoter library, we demonstrate the capability to externally regulate the timing and level of protein expression. These control mechanisms facilitate the construction of ON, OFF, and two-output switches, with potential therapeutic applications such as inducible cancer immunotherapies. These circuits, along with other synthetic networks that can be developed using these tools, will expand the utility of synthetic mRNA as a therapeutic modality

    Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy

    No full text
    Bacterial populations exhibit a range of metabolic states influenced by their environment, intra- and interspecies interactions. The identification of bacterial metabolic states and transitions between them in their native environment promises to elucidate community behavior and stochastic processes, such as antibiotic resistance acquisition. In this work, we employ two-photon fluorescence lifetime imaging microscopy (FLIM) to create a metabolic fingerprint of individual bacteria and populations. FLIM of autofluorescent reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, has been previously exploited for label-free metabolic imaging of mammalian cells. However, NAD(P)H FLIM has not been established as a metabolic proxy in bacteria. Applying the phasor approach, we create FLIM-phasor maps of Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus epidermidis at the single cell and population levels. The bacterial phasor is sensitive to environmental conditions such as antibiotic exposure and growth phase, suggesting that observed shifts in the phasor are representative of metabolic changes within the cells. The FLIM-phasor approach represents a powerful, non-invasive imaging technique to study bacterial metabolism in situ and could provide unique insights into bacterial community behavior, pathology and antibiotic resistance with sub-cellular resolution
    corecore