55 research outputs found
Hygrothermal performance of vernacular stone in a desert climate
Remote desert communities are often the most vulnerable to temperature extremes, as lack of access to reliable electricity prevents the use of active cooling or heating. Hence, there is a need to investigate how the building envelope itself can be used to passively regulate indoor environments. Readily available vernacular building materials in such areas are thought to aid in not only attenuating temperature swings but also moisture regulation, which improves comfort in a dry climate. Thus, the aim of this research is to investigate the hygrothermalproperties of three different stone types commonly used as building materials in the Western Desertof Egypt: sandstone, limestone and, uniquely,Karshif, a rock rich insodium chloride. The materials’ thermal conductivity, moisture sorption and buffering, water vapour resistance, porosity distribution and phase composition are experimentally investigated. Our results show that the local perception of limestone buildings having poor indoor comfort, despite the material’s superior thermal conductivity and specific heat capacity is only explainable through the relative superiority of sandstone and Karshif in moisture buffering. Vernacular materials need to be tested in environmental conditions representative of their local climate, rather than standardised conditions, as the latter may paint an incorrect picture of performance which, in the case of Karshif, led to partial dissolution under relative humidity of greater than 80%. However, testing under typical desert conditions demonstrates that both Karshif and sandstone are viable building materials that exhibit excellent moisture regulation behaviour. Since building materials in desert conditions may have to withstand atypical weather extremes, including rain, local materials need to be utilised within carefully designed wall assemblies or treated wall sections and, in the case of Karshif, not used in areas where relative humidity regularly reaches 80%. These findings are an important contribution in validating the performance of vernacular stone, and more widely, in demonstrating the importance of selecting appropriate testing conditions
Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
BACKGROUND: Despite the well documented consequences of obesity during childhood and adolescence and future risks of excess body mass on non-communicable diseases in adulthood, coordinated global action on excess body mass in early life is still insufficient. Inconsistent measurement and reporting are a barrier to specific targets, resource allocation, and interventions. In this Article we report current estimates of overweight and obesity across childhood and adolescence, progress over time, and forecasts to inform specific actions. METHODS: Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage. FINDINGS: Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage. INTERPRETATION: Both overweight and obesity increased substantially in every world region between 1990 and 2021, suggesting that current approaches to curbing increases in overweight and obesity have failed a generation of children and adolescents. Beyond 2021, overweight during childhood and adolescence is forecast to stabilise due to further increases in the population who have obesity. Increases in obesity are expected to continue for all populations in all world regions. Because substantial change is forecasted to occur between 2022 and 2030, immediate actions are needed to address this public health crisis
Parameter induction in continuous univariate distributions: Well-established G families
Enzyme production from food wastes using a biorefinery concept
According to Food and Agricultural Organization (FAO), one-third of food produced globally for human consumption (nearly 1.3 billion tonnes) is lost along the food supply chain. In many countries food waste is currently landfilled or incinerated together with other combustible municipal wastes for possible recovery of energy. However, these two options are facing more and more economic and environmental stresses. Due to its organic- and nutrient-rich nature, theoretically food waste can be converted to valuable products (e.g. bio-products such as methane, hydrogen, ethanol, enzymes, organic acids, chemicals and fuels) through various fermentation processes. Such conversion of food waste is potentially more profitable than its conversion to animal feed or transportation fuel. Food waste valorisation has therefore gained interest, with value added bio-products such as methane, hydrogen, ethanol, enzymes, organic acids, chemicals, and fuels. Therefore, the aim of this review is to provide information on the food waste situation with emphasis on Asia–Pacific countries and the state of the art food waste processing technologies to produce enzymes
Identifying cost-effective locations of storage dams for rainfall harvesting and flash flood mitigation in arid and semi-arid regions
Data Availability: No data was used for the research described in the article.Copyright © 2023 The Authors. Study region:
Wadi Tayyibah is located in south Sinai, Egypt, in a region called Abou Zenima, and it is used to develop this study.
Study focus:
Flash floods tremendously impact many facets of human life due to their destructive consequences and the costs associated with mitigating efforts. This study aims to evaluate the harvesting of Runoff by delineating the watersheds using the Hydrologic Engineering Center-1 (HEC-1) model and ArcGIS software in trying to benefit from it in different ways. All morphometric parameters of the basin were considered, and the risk degree of the different sub-basins was determined. The suitable locations of dams were identified using a Geographical Information System (GIS) using the basin's morphometric characteristics.
New hydrological insights for the region:
The study proposed a total number of eight dams, including five dams that were recommended for sub-basin (1) and three dams in sub-basin (4), while sub-basins (2) and (3) are not suitable locations to build dams according to the contour map of Wadi Tayyibah. Results indicate that, based on the constructed flash flood hazard maps and the basin's detailed morphometric characteristics, the best locations of dams are Dam (3) in sub-basin (1) and Dam (7) in sub-basin (4), where the runoff volume reached 3.13 million cubic meters (Mm3) and 5.56 Mm3 for return period 100, respectively. This study is useful for decision-makers and designers for using morphometric parameters and flash flood hazard degree maps to select dam locations. Also, the cost-benefit analysis for using the morphometric parameters is required to be investigated.There is no funding source
Flood Susceptibility for Storage Dams Locations to Reduce the Risk of Flash Floods and to Harvest Rainfall Utilizing a <scp>GIS</scp> Spatial Distribution Model and the Analytical Hierarchy Approach
Data Availability Statement:
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.Flooding is a natural calamity that causes widespread devastation, including severe infrastructure destruction, significant economic consequences, and social disturbances around the world, particularly in the Sinai region. Wadi Ked is one of Sinai, Egypt's, most vulnerable districts to flood hazards, and it is the location used for this study. This study aims to create a map of flood‐prone areas in Wadi Ked by combining Geographic Information System (GIS) technology and multi‐criteria decision‐making (MCDM) techniques, utilizing the Analytical Hierarchy Process (AHP) methodology. To achieve the study's goal, flood‐related factors such as elevation, slope, distance to roads, distance from streams, annual rainfall, drainage density, topographic wetness index, land use and land cover, normalized difference vegetation index, soil type, and curvature were weighted and overlaid. The results show that 26.91% of the areas studied have a low sensitivity to flooding, whereas roughly 73.09% of the area is moderately to very highly vulnerable to flooding. The study proposed a dam with a height of 30 m, a width of 0.416 km, and a lake capacity of 31.74 million cubic meters (MCM). The surface runoff volumes from 50‐ and 100‐year storms in sub‐basins 1–5 are 23.07 MCM and 29.66 MCM, respectively. Model validation was performed by comparing susceptibility maps generated from literature‐based and expert‐based AHP weights, revealing a 98% spatial agreement and a Kappa coefficient of 0.995, confirming the model's robustness. This study offers value to decision‐makers and planners by utilizing morphometric properties and flash flood risk maps to identify suitable locations for dams.Brunel University Londo
Boundary layer flow and heat transfer of a nanofluid over a permeable unsteady stretching sheet with viscous dissipation
- …
