90 research outputs found

    Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor

    Get PDF
    The xylanase biosynthesis is induced by its substrate—xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and β-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.This work was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP/Brazil), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq/Brazil), National System for Research on Biodiversity (SISBIOTA-Brazil, CNPq 563260/2010-6/FAPESP no. 2010/52322-3), and Fundacao para a Ciencia e a Tecnologia (FCT/Portugal)

    A novel xylan degrading β-D-xylosidase: purification and biochemical characterization

    Get PDF
    Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular b-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. b-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 C and 3.0–5.5, respectively.b-xylosidase was stable in acidic pH (3.0–6.0) and 70 C for 1 h. The enzyme was activated by 5 mM MnCl2 (28 %)and MgCl2 (20 %) salts. The b-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-b- D-xylopyranoside, exhibiting apparent Km and Vmax values of 0.66 mM and 39 U (mg protein)-1 respectively, and to a lesser extent p-nitrophenyl-b-D-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources,suggesting a novel b-D-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by b-xylosidase. TLC confirmed the capacity.This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and the Conselho de Desenvolvimento Científico e Tecnológico (CNPq). J. A. J. and M. L. T. M. P are Research Fellows of CNPq. M. M. was a recipient of a FAPESP fellowship and this work is part of her Doctoral Thesis. It is also part of the project SISBIOTA CNPq: 563260/2010-6 and FAPESP: 2010/52322-3

    Characterisation of a recombinant β-xylosidase (xylA) from Aspergillus oryzae expressed in Pichia pastoris

    Get PDF
    β-xylosidases catalyse the hydrolysis of short chain xylooligosaccharides from their non-reducing ends into xylose. In this study we report the heterologous expression of Aspergillus oryzae β-xylosidase (XylA) in Pichia pastoris under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The recombinant enzyme was optimally active at 55°C and pH 4.5 with Km and Vmax values of 1.0 mM and 250 μmol min−1 mg−1 respectively against 4-nitrophenyl β-xylopyranoside. Xylose was a competitive inhibitor with a Ki of 2.72 mM, whereas fructose was an uncompetitive inhibitor reducing substrate binding affinity (Km) and conversion efficiency (Vmax). The enzyme was characterised to be an exo-cutting enzyme releasing xylose from the non-reducing ends of β-1,4 linked xylooligosaccharides (X2, X3 and X4). Catalytic conversion of X2, X3 and X4 decreased (Vmax and kcat) with increasing chain length

    Experience of spouses of women with breast cancer: an integrative literature review

    Get PDF
    Objective: To gather, to characterize, to analyze, to synthesize and to integrate primary studies that addressed the experiences of spouses / husbands / partners of women with breast cancer, presenting the current state of knowledge. Method: Integrative literature review carried out in the databases of VHL, PubMed, CINHAL e SciELO. Results: The sample consisted of eight studies published between 2000-2012, which pointed to the experiences of the involvement and the care of the husbands towards their ill wives. Conclusion: This study highlights the need for attention and assistance to those spouses, as well as guidance and education to exercise the care the same way as the health staff has done with women. Furthermore, it emphasizes the importance of further studies in order to deepen the knowledge on this topic, and thus, improve the care with better scientific basis

    A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain

    Get PDF
    In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain

    Thermostable conidial and mycelial alkaline phosphatases from the thermophilic fungus Scytalidium thermophilum

    No full text
    An extracellular (conidial) and an intracellular (mycelial) alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum were purified by DEAE-cellulose and Concanavalin A-Sepharose chromatography. These enzymes showed allosteric behavior either in the presence or absence of MgCl2, BaCl2, CuCl2, and ZnCl2. All of these ions increased the maximal velocity of both enzymes. The molecular masses of the conidial and mycelial enzymes, estimated by gel filtration, were 162 and 132 kDa, respectively. Both proteins migrated on SDS-PAGE as a single polypeptide of 63 and 58.5 kDa, respectively, suggesting that these enzymes were dimers of identical subunits. The best substrate for the conidial and mycelial phosphatases was p-nitrophenylphosphate, but,beta -glycerophosphate and other phosphorylated compounds also served as substrates. The optimum pH for the conidial and mycelial alkaline phosphatases was 10.0 and 9.5 in the presence of AMPOL buffer, and their carbohydrate contents were about 54% and 63%, respectively. The optimum temperature was 70-75 degreesC for both activities. The enzymes were fully stable up to 1 h at 60 degreesC. These and other properties suggested that the alkaline phosphatases of S. thermophilum might be suitable for biotechnological applications

    Development of Fatigue Free Orthotropic Steel Deck System

    No full text
    corecore