183 research outputs found

    Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community

    Get PDF
    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

    Developing a minimum common dataset for hip fracture audit to help countries set up national audits that can support international comparisons

    Get PDF
    Aims The aim of this study was to explore current use of the Global Fragility Fracture Network (FFN) Minimum Common Dataset (MCD) within established national hip fracture registries, and to propose a revised MCD to enable international benchmarking for hip fracture care. Methods We compared all ten established national hip fracture registries: England, Wales, and Northern Ireland; Scotland; Australia and New Zealand; Republic of Ireland; Germany; the Netherlands; Sweden; Norway; Denmark; and Spain. We tabulated all questions included in each registry, and cross-referenced them against the 32 questions of the MCD dataset. Having identified those questions consistently used in the majority of national audits, and which additional fields were used less commonly, we then used consensus methods to establish a revised MCD. Results A total of 215 unique questions were used across the ten registries. Only 72 (34%) were used in more than one national audit, and only 32 (15%) by more than half of audits. Only one registry used all 32 questions from the 2014 MCD, and five questions were only collected by a single registry. Only 21 of the 32 questions in the MCD were used in the majority of national audits. Only three fields (anaesthetic grade, operation, and date/time of surgery) were used by all ten established audits. We presented these findings at the Asia-Pacific FFN meeting, and used an online questionnaire to capture feedback from expert clinicians from different countries. A draft revision of the MCD was then presented to all 95 nations represented at the Global FFN conference in September 2021, with online feedback again used to finalize the revised MCD. Conclusion The revised MCD will help aspirant nations establish new registry programmes, facilitate the integration of novel analytic techniques and greater multinational collaboration, and serve as an internationally-accepted standard for monitoring and improving hip fracture services

    Measurement of the Relative Branching Fraction of Υ(4S)\Upsilon(4S) to Charged and Neutral B-Meson Pairs

    Full text link
    We analyze 9.7 x 10^6 B\bar{B}$ pairs recorded with the CLEO detector to determine the production ratio of charged to neutral B-meson pairs produced at the Y(4S) resonance. We measure the rates for B^0 -> J/psi K^{(*)0} and B^+ -> J/psi K^{(*)+} decays and use the world-average B-meson lifetime ratio to extract the relative widths f+-/f00 = Gamma(Y(4S) -> B+B-)/Gamma(Y(4S) -> B0\bar{B0}) = = 1.04 +/- 0.07(stat) +/- 0.04(syst). With the assumption that f+- + f00 = 1, we obtain f00 = 0.49 +/- 0.02(stat) +/- 0.01(syst) and f+- = 0.51 +/- 0.02(stat) +/- 0.01(syst). This production ratio and its uncertainty apply to all exclusive B-meson branching fractions measured at the Y(4S) resonance.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Study of the Decays B0 --> D(*)+D(*)-

    Full text link
    The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7 million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4 and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the first angular analysis of the B0 --> D*+D*- decay and determine that the CP-even fraction of the final state is greater than 0.11 at 90% CL. Future measurements of the time dependence of these decays may be useful for the investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.

    A Search for BτνB\to \tau\nu

    Full text link
    We report results of a search for BτνB\to\tau\nu in a sample of 9.7 million charged BB meson decays. The search uses both πν\pi\nu and ννˉ\ell\nu\bar\nu decay modes of the τ\tau, and demands exclusive reconstruction of the companion Bˉ\bar B decay to suppress background. We set an upper limit on the branching fraction B(Bτν)<8.4×104{\cal B}(B\to \tau\nu) < 8.4\times 10^{-4} at 90% confidence level. With slight modification to the analysis we also establish B(B±K±ννˉ)<2.4×104{\cal B}(B^\pm\to K^\pm\nu\bar\nu) < 2.4\times 10^{-4} at 90% confidence level.Comment: 10 ages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Precise Measurement of B^{0}\to \bar{B^{0} Mixing Parameters at the Υ(\Upsilon(S)$

    Full text link
    We describe a measurement of B^0-B^0bar mixing parameters exploiting a method of partial reconstruction of the decay chains B0 -> D^{*-}\pi^+ and B0 -> D^{*-}\rho^+. Using 9.6 x 10^6 BBbar pairs collected at the Cornell Electron Storage Ring, we find \chi_d = 0.198 +- 0.013 +- 0.014, |y_d|<0.41 at 95% confidence level, and |Re(\epsilon_B)|<0.034 at 95% confidence level.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Measurement of B(/\c->pKpi)

    Full text link
    The /\c->pKpi yield has been measured in a sample of two-jet continuum events containing a both an anticharm tag (Dbar) as well as an antiproton (e+e- -> Dbar pbar X), with the antiproton in the hemisphere opposite the Dbar. Under the hypothesis that such selection criteria tag e+e- -> Dbar pbar (/\c) X events, the /\c->pkpi branching fraction can be determined by measuring the pkpi yield in the same hemisphere as the antiprotons in our Dbar pbar X sample. Combining our results from three independent types of anticharm tags, we obtain B(/\c->pKpi)=(5.0+/-0.5+/-1.2)

    Seasonality of Plasmodium falciparum transmission: a systematic review

    Get PDF
    This article is fully open access and the published version is available free of charge from the jounal website.http://www.malariajournal.com/content/14/1/343Background Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the drivers of malaria seasonality are often unclear. Given the massive variation in the landscape upon which transmission acts, intra-annual fluctuations are likely influenced by different factors in different settings. Further, the presence of potentially substantial inter-annual variation can mask seasonal patterns; it may be that a location has “strongly seasonal” transmission and yet no single season ever matches the mean, or synoptic, curve. Accurate accounting of seasonality can inform efficient malaria control and treatment strategies. In spite of the demonstrable importance of accurately capturing the seasonality of malaria, data required to describe these patterns is not universally accessible and as such localized and regional efforts at quantifying malaria seasonality are disjointed and not easily generalized. Methods The purpose of this review was to audit the literature on seasonality of P. falciparum and quantitatively summarize the collective findings. Six search terms were selected to systematically compile a list of papers relevant to the seasonality of P. falciparum transmission, and a questionnaire was developed to catalogue the manuscripts. Results and discussion 152 manuscripts were identified as relating to the seasonality of malaria transmission, deaths due to malaria or the population dynamics of mosquito vectors of malaria. Among these, there were 126 statistical analyses and 31 mechanistic analyses (some manuscripts did both). Discussion Identified relationships between temporal patterns in malaria and climatological drivers of malaria varied greatly across the globe, with different drivers appearing important in different locations. Although commonly studied drivers of malaria such as temperature and rainfall were often found to significantly influence transmission, the lags between a weather event and a resulting change in malaria transmission also varied greatly by location. Conclusions The contradicting results of studies using similar data and modelling approaches from similar locations as well as the confounding nature of climatological covariates underlines the importance of a multi-faceted modelling approach that attempts to capture seasonal patterns at both small and large spatial scales. Keywords: Plasmodium falciparum ; Seasonality; Climatic driversAcknowledgements This work was supported by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Science and Technology Directory, Department of Homeland Security, and Fogarty International Center, National Institutes of Health. DLS is funded by a grant from the Bill & Melinda Gates Foundation (OPP1110495), which also supports RCR. PMA is grateful to the University of Utrecht for supporting him with The Belle van Zuylen Chair. PWG is a Career Development Fellow (K00669X) jointly funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement and receives support from the Bill and Melinda Gates Foundation (OPP1068048, OPP1106023)

    Spider Silk Constructs Enhance Axonal Regeneration and Remyelination in Long Nerve Defects in Sheep

    Get PDF
    BACKGROUND: Surgical reapposition of peripheral nerve results in some axonal regeneration and functional recovery, but the clinical outcome in long distance nerve defects is disappointing and research continues to utilize further interventional approaches to optimize functional recovery. We describe the use of nerve constructs consisting of decellularized vein grafts filled with spider silk fibers as a guiding material to bridge a 6.0 cm tibial nerve defect in adult sheep. METHODOLOGY/PRINCIPAL FINDINGS: The nerve constructs were compared to autologous nerve grafts. Regeneration was evaluated for clinical, electrophysiological and histological outcome. Electrophysiological recordings were obtained at 6 months and 10 months post surgery in each group. Ten months later, the nerves were removed and prepared for immunostaining, electrophysiological and electron microscopy. Immunostaining for sodium channel (NaV 1.6) was used to define nodes of Ranvier on regenerated axons in combination with anti-S100 and neurofilament. Anti-S100 was used to identify Schwann cells. Axons regenerated through the constructs and were myelinated indicating migration of Schwann cells into the constructs. Nodes of Ranvier between myelin segments were observed and identified by intense sodium channel (NaV 1.6) staining on the regenerated axons. There was no significant difference in electrophysiological results between control autologous experimental and construct implantation indicating that our construct are an effective alternative to autologous nerve transplantation. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that spider silk enhances Schwann cell migration, axonal regrowth and remyelination including electrophysiological recovery in a long-distance peripheral nerve gap model resulting in functional recovery. This improvement in nerve regeneration could have significant clinical implications for reconstructive nerve surgery

    The Missing Part of Seed Dispersal Networks: Structure and Robustness of Bat-Fruit Interactions

    Get PDF
    Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i) some bat species depend more on fruits than others, and (ii) that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H2' = 0.37±0.10, mean ± SD) and similar nestedness (NODF = 0.56±0.12) than pollination networks. All networks were modular (M = 0.32±0.07), and had on average four cohesive subgroups (modules) of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum), although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10) and plants (R = 0.68±0.09). Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks
    corecore