1,201 research outputs found

    360-Degree Complex Primary Reconstruction Using Porous Tantalum Cages for Adult Degenerative Spinal Deformity

    Get PDF
    Study Design: Retrospective cohort study. Objective: To assess both implant performance and the amount of correction that can be achieved using multilevel anterior lumbar interbody fusion (ALIF). Methods: Retrospective cohort study (n = 178) performed over a 4-year period. Surgical variables examined included blood loss, operative time, perioperative complications, and secondary/revision procedures. Follow-up radiographic assessment was performed to record implant-related problems. Radiographic parameters were examined pre- and postoperatively. Health-related quality of life (HRQOL) outcome measures were collected preoperatively and at 6 weeks, 6 months, 1 year, and 2 years postoperatively. Descriptive and comparative statistical analysis, using paired-sample t test and repeated-measures analysis of variance (rANOVA), was performed. Results: Lumbar lordosis increased from 42° ± 17° preoperatively to 55° ± 11° postoperatively (P < .001). The visual analog scale back pain mean score improved from 8.3 ± 1.5 preoperatively to 2.6 ± 2.4 at 2 years (P < .001). The mean Oswestry Disability Index improved from 69.5 ± 21.5 preoperatively to 19.9 ± 15.2 at 2 years (P < .001). The EQ-5D mean score improved from 0.2 ± 0.2 preoperatively to 0.8 ± 0.1 at 2 years (P = .02). There were no neurological, vascular, or visceral approach-related injuries reported. No rod breakages and no symptomatic nonunions occurred. There was one revision procedure performed for fracture. Conclusions: The use of porous tantalum cages as part of a 360-degree fusion to treat adult degenerative spinal deformity has been demonstrated to be a safe and effective strategy, leading to good clinical, functional, and radiographic outcomes in the short term

    Electronic Coherence Dephasing in Excitonic Molecular Complexes: Role of Markov and Secular Approximations

    Full text link
    We compare four different types of equations of motion for reduced density matrix of a system of molecular excitons interacting with thermodynamic bath. All four equations are of second order in the linear system-bath interaction Hamiltonian, with different approximations applied in their derivation. In particular we compare time-nonlocal equations obtained from so-called Nakajima-Zwanzig identity and the time-local equations resulting from the partial ordering prescription of the cummulant expansion. In each of these equations we alternatively apply secular approximation to decouple population and coherence dynamics from each other. We focus on the dynamics of intraband electronic coherences of the excitonic system which can be traced by coherent two-dimensional spectroscopy. We discuss the applicability of the four relaxation theories to simulations of population and coherence dynamics, and identify features of the two-dimensional coherent spectrum that allow us to distinguish time-nonlocal effects.Comment: 14 pages, 8 figure

    Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria.

    Get PDF
    Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechocystis \textit{Synechocystis } sp. PCC 7002 and Synechocystis \textit{Synechocystis } sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechocystis \textit{Synechocystis } sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.T.L. was supported by BBSRC Research Grant BB/J016985/1 to C.W.M. D.J.L-S. was supported by the Environmental Services Association Education Trust. L.L.B was supported by a BBSRC Doctoral Training Grant (BB/F017464/1)

    Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria.

    Get PDF
    Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechocystis \textit{Synechocystis } sp. PCC 7002 and Synechocystis \textit{Synechocystis } sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechocystis \textit{Synechocystis } sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.T.L. was supported by BBSRC Research Grant BB/J016985/1 to C.W.M. D.J.L-S. was supported by the Environmental Services Association Education Trust. L.L.B was supported by a BBSRC Doctoral Training Grant (BB/F017464/1)

    Behavioral Mechanism during Human Sperm Chemotaxis: Involvement of Hyperactivation

    Get PDF
    When mammalian spermatozoa become capacitated they acquire, among other activities, chemotactic responsiveness and the ability to exhibit occasional events of hyperactivated motility—a vigorous motility type with large amplitudes of head displacement. Although a number of roles have been proposed for this type of motility, its function is still obscure. Here we provide evidence suggesting that hyperactivation is part of the chemotactic response. By analyzing tracks of spermatozoa swimming in a spatial chemoattractant gradient we demonstrate that, in such a gradient, the level of hyperactivation events is significantly lower than in proper controls. This suggests that upon sensing an increase in the chemoattractant concentration capacitated cells repress their hyperactivation events and thus maintain their course of swimming toward the chemoattractant. Furthermore, in response to a temporal concentration jump achieved by photorelease of the chemoattractant progesterone from its caged form, the responsive cells exhibited a delayed turn, often accompanied by hyperactivation events or an even more intense response in the form of flagellar arrest. This study suggests that the function of hyperactivation is to cause a rather sharp turn during the chemotactic response of capacitated cells so as to assist them to reorient according to the chemoattractant gradient. On the basis of these results a model for the behavior of spermatozoa responding to a spatial chemoattractant gradient is proposed

    Solar Cycle Occurrence of Alfvenic Fluctuations and Related Geo-Efficiency

    Get PDF
    We examine solar wind intervals with Alfvénic fluctuations (ALFs) in 1995–2011. The annual number, the total annual duration, and the average length of ALFs vary over the solar cycle, having a maximum in 2003 and a minimum in 2009. ALFs are most frequent in the declining phase of solar cycle, when the number of high‐speed streams at the Earth's vicinity is increased. There is a rapid transition after the maximum of solar cycle 23 from ALFs being mainly embedded in slow solar wind (600 km/s) since 2003. Cross helicity increased by 30% from 2002 to 2003 and maximized typically 4–6 h before solar wind speed maximum. Cross helicity remained elevated for several days for highly Alfvénic non‐ICME streams, but only for a few hours for ICMEs. The number of substorms increased by about 40% from 2002 to 2003, and the annual number of substorms closely follows the annual cross helicity. This further emphasizes the role of Alfvénic fluctuations in modulating substorm activity. The predictability of substorm frequency and size would be greatly improved by monitoring solar wind Alfvénic fluctuations in addition to the mean values of the important solar wind parameters

    Deciphering the Chemical Basis of Nestmate Recognition

    Get PDF
    Social insects maintain colony cohesion by recognizing and, if necessary, discriminating against conspecifics that are not part of the colony. This recognition ability is encoded by a complex mixture of cuticular hydrocarbons (CHCs), although it is largely unclear how social insects interpret such a multifaceted signal. CHC profiles often contain several series of homologous hydrocarbons, possessing the same methyl branch position but differing in chain length (e.g., 15-methyl-pentatriacontane, 15-methyl-heptatriacontane, 15-methyl-nonatriacontane). Recent studies have revealed that within species these homologs can occur in correlated concentrations. In such cases, single compounds may convey the same information as the homologs. In this study, we used behavioral bioassays to explore how social insects perceive and interpret different hydrocarbons. We tested the aggressive response of Argentine ants, Linepithema humile, toward nest-mate CHC profiles that were augmented with one of eight synthetic hydrocarbons that differed in branch position, chain length, or both. We found that Argentine ants showed similar levels of aggression toward nest-mate CHC profiles augmented with compounds that had the same branch position but differed in chain length. Conversely, Argentine ants displayed different levels of aggression toward nest-mate CHC profiles augmented with compounds that had different branch positions but the same chain length. While this was true in almost all cases, one CHC we tested elicited a greater aggressive response than its homologs. Interestingly, this was the only compound that did not occur naturally in correlated concentrations with its homologs in CHC profiles. Combined, these data suggest that CHCs of a homologous series elicit the same aggressive response because they convey the same information, rather than Argentine ants being unable to discriminate between different homologs. This study contributes to our understanding of the chemical basis of nestmate recognition by showing that, similar to spoken language, the chemical language of social insects contains “synonyms,” chemicals that differ in structure, but not meaning

    TDP-43 as a potential biomarker for amyotrophic lateral sclerosis:a systematic review and meta-analysis

    Get PDF
    Abstract Background Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are incurable, progressive and fatal neurodegenerative diseases with patients variably affected clinically by motor, behavior, and cognitive deficits. The accumulation of an RNA-binding protein, TDP-43, is the most significant pathological finding in approximately 95% of ALS cases and 50% of FTD cases, and discovery of this common pathological signature, together with an increasing understanding of the shared genetic basis of these disorders, has led to FTD and ALS being considered as part of a single disease continuum. Given the widespread aggregation and accumulation of TDP-43 in FTD-ALS spectrum disorder, TDP-43 may have potential as a biomarker in these diseases. Methods We therefore conducted a systematic review and meta-analysis to evaluate the diagnostic utility of TDP-43 detected in the cerebrospinal fluid (CSF) of patients with FTD-ALS spectrum disorder. Results From seven studies, our results demonstrate that patients with ALS have a statistically significantly higher level of TDP-43 in CSF (effect size 0.64, 95% CI: 0.1–1.19, p = 0.02). Conclusions These data suggest promise for the use of CSF TDP-43 as a biomarker for ALS

    Birth outcomes in Colorado's undocumented immigrant population

    Get PDF
    BACKGROUND: The birth outcomes of undocumented women have not been systematically studied on a large scale. The growing number of undocumented women giving birth in the United States has important implications for clinical care and public health policy. The objective of this study was to describe birth outcomes of undocumented immigrants in Colorado. METHODS: Retrospective descriptive study of singleton births to 5961 undocumented women using birth certificate data for 1998–1999. RESULTS: Undocumented mothers were younger, less educated, and more likely to be single. They had higher rates of anemia, were less likely to gain enough weight, and less likely to receive early prenatal care. They were much less likely to use alcohol or tobacco. Undocumented women had a lower rate of low birth weight (5.3% v 6.5%, P < .001) or preterm infants (12.9% v 14.5%; p = .001). Undocumented women experienced higher rates of labor complications including excessive bleeding (2.3% v 0.8%, p < .001) and fetal distress (8.7% v 3.6%, p < .001). CONCLUSION: Undocumented women have lower rates of preterm delivery and low birth weight infants, but higher rates of pregnancy related risk factors. Higher prevalence of some risk factors which are amenable to medical intervention reveals the need for improved prenatal care in this group

    Policy challenges for the pediatric rheumatology workforce: Part I. Education and economics

    Get PDF
    For children with rheumatic conditions, the available pediatric rheumatology workforce mitigates their access to care. While the subspecialty experiences steady growth, a critical workforce shortage constrains access. This three-part review proposes both national and international interim policy solutions for the multiple causes of the existing unacceptable shortfall. Part I explores the impact of current educational deficits and economic obstacles which constrain appropriate access to care. Proposed policy solutions follow each identified barrier
    corecore