7,119 research outputs found

    The Geography of Sexual Orientation: Structural Stigma and Sexual Attraction, Behavior, and Identity Among Men Who Have Sex with Men Across 38 European Countries.

    Get PDF
    : While the prevalence of sexual identities and behaviors of men who have sex with men (MSM) varies across countries, no study has examined country-level structural stigma toward sexual minorities as a correlate of this variation. Drawing on emerging support for the context-dependent nature of MSM's open sexual self-identification cross-nationally, we examined country-level structural stigma as a key correlate of the geographic variation in MSM's sexual attraction, behavior, and identity, and concordance across these factors. Data come from the European MSM Internet Survey, a multi-national dataset containing a multi-component assessment of sexual orientation administered across 38 European countries (N = 174,209). Country-level stigma was assessed using a combination of national laws and policies affecting sexual minorities and a measure of attitudes toward sexual minorities held by the citizens of each country. Results demonstrate that in more stigmatizing countries, MSM were significantly more likely to report bisexual/heterosexual attractions, behaviors, and identities, and significantly less likely to report concordance across these factors, than in less stigmatizing countries. Settlement size moderated associations between country-level structural stigma and odds of bisexual/heterosexual attraction and behavior, such that MSM living in sparsely populated locales within high-structural stigma countries were the most likely to report bisexual or heterosexual behaviors and attractions. While previous research has demonstrated associations between structural stigma and adverse physical and mental health outcomes among sexual minorities, this study was the first to show that structural stigma was also a key correlate not only of sexual orientation identification, but also of MSM's sexual behavior and even attraction. Findings have implications for understanding the ontology of MSM's sexuality and suggest that a comprehensive picture of MSM's sexuality will come from attending to the local contexts surrounding this important segment of the global population.<br/

    The usefulness of rapid diagnostic tests in the new context of low malaria transmission in zanzibar.

    Get PDF
    BACKGROUND\ud \ud We assessed if histidine-rich-protein-2 (HRP2) based rapid diagnostic test (RDT) remains an efficient tool for Plasmodium falciparum case detection among fever patients in Zanzibar and if primary health care workers continue to adhere to RDT results in the new epidemiological context of low malaria transmission. Further, we evaluated the performance of RDT within the newly adopted integrated management of childhood illness (IMCI) algorithm in Zanzibar.\ud \ud METHODS AND FINDINGS\ud \ud We enrolled 3890 patients aged ≥2 months with uncomplicated febrile illness in this health facility based observational study conducted in 12 primary health care facilities in Zanzibar, between May-July 2010. One patient had an inconclusive RDT result. Overall 121/3889 (3.1%) patients were RDT positive. The highest RDT positivity rate, 32/528 (6.1%), was found in children aged 5-14 years. RDT sensitivity and specificity against PCR was 76.5% (95% CI 69.0-83.9%) and 99.9% (95% CI 99.7-100%), and against blood smear microscopy 78.6% (95% CI 70.8-85.1%) and 99.7% (95% CI 99.6-99.9%), respectively. All RDT positive, but only 3/3768 RDT negative patients received anti-malarial treatment. Adherence to RDT results was thus 3887/3889 (99.9%). RDT performed well in the IMCI algorithm with equally high adherence among children <5 years as compared with other age groups.\ud \ud CONCLUSIONS\ud \ud The sensitivity of HRP-2 based RDT in the hands of health care workers compared with both PCR and microscopy for P. falciparum case detection was relatively low, whereas adherence to test results with anti-malarial treatment was excellent. Moreover, the results provide evidence that RDT can be reliably integrated in IMCI as a tool for improved childhood fever management. However, the relatively low RDT sensitivity highlights the need for improved quality control of RDT use in primary health care facilities, but also for more sensitive point-of-care malaria diagnostic tools in the new epidemiological context of low malaria transmission in Zanzibar.\ud \ud TRIAL REGISTRATION\ud \ud ClinicalTrials.gov NCT01002066

    Cross modal perception of body size in domestic dogs (Canis familiaris)

    Get PDF
    While the perception of size-related acoustic variation in animal vocalisations is well documented, little attention has been given to how this information might be integrated with corresponding visual information. Using a cross-modal design, we tested the ability of domestic dogs to match growls resynthesised to be typical of either a large or a small dog to size- matched models. Subjects looked at the size-matched model significantly more often and for a significantly longer duration than at the incorrect model, showing that they have the ability to relate information about body size from the acoustic domain to the appropriate visual category. Our study suggests that the perceptual and cognitive mechanisms at the basis of size assessment in mammals have a multisensory nature, and calls for further investigations of the multimodal processing of size information across animal species

    The Josephson heat interferometer

    Full text link
    The Josephson effect represents perhaps the prototype of macroscopic phase coherence and is at the basis of the most widespread interferometer, i.e., the superconducting quantum interference device (SQUID). Yet, in analogy to electric interference, Maki and Griffin predicted in 1965 that thermal current flowing through a temperature-biased Josephson tunnel junction is a stationary periodic function of the quantum phase difference between the superconductors. The interplay between quasiparticles and Cooper pairs condensate is at the origin of such phase-dependent heat current, and is unique to Josephson junctions. In this scenario, a temperature-biased SQUID would allow heat currents to interfere thus implementing the thermal version of the electric Josephson interferometer. The dissipative character of heat flux makes this coherent phenomenon not less extraordinary than its electric (non-dissipative) counterpart. Albeit weird, this striking effect has never been demonstrated so far. Here we report the first experimental realization of a heat interferometer. We investigate heat exchange between two normal metal electrodes kept at different temperatures and tunnel-coupled to each other through a thermal `modulator' in the form of a DC-SQUID. Heat transport in the system is found to be phase dependent, in agreement with the original prediction. With our design the Josephson heat interferometer yields magnetic-flux-dependent temperature oscillations of amplitude up to ~21 mK, and provides a flux-to-temperature transfer coefficient exceeding ~ 60mK/Phi_0 at 235 mK [Phi_0 2* 10^(-15) Wb is the flux quantum]. Besides offering remarkable insight into thermal transport in Josephson junctions, our results represent a significant step toward phase-coherent mastering of heat in solid-state nanocircuits, and pave the way to the design of novel-concept coherent caloritronic devices.Comment: 4+ pages, 3 color figure

    Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications

    Get PDF
    SIGNIFICANCE Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. RECENT ADVANCES We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. CRITICAL ISSUES Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. FUTURE DIRECTIONS Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic. Antioxid. Redox Signal. 23, 1171-1185

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer

    Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system

    Get PDF
    Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans

    Neural mechanisms underlying motivation of mental versus physical effort.

    Get PDF
    Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia

    Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics

    Full text link
    The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.Comment: 19 pages, 3 color figure

    Nasolabial fold discontinuity during speech as a possible extended cleft phenotype

    Get PDF
    Objective: This exploratory research sought to extend the cleft phenotype by identifying movement-related soft tissue appearance changes in the midfacial region in individuals with cleft lip/palate or those with genetic susceptibility to cleft lip/palate (unaffected relatives). The cleft phenotype (clinically identified orofacial cleft or subclinical orbicularis oris defect) was hypothesized to be associated with movement related appearance changes in the midfacial region, e.g., with furrowing and dimpling during speech. Design: Changes in the appearance of skin in the midfacial region, including a newly identified phenotypic feature, nasolabial fold (NLF) discontinuity, were described and compared across groups. Participants: Individuals with cleft lip (n = 42), unaffected relatives of persons with a cleft (n = 57) and healthy controls (n = 41) were compared. Results: Frequencies of NLF discontinuity differed across cleft, relative, and control groups. NLF discontinuities were observed more frequently in individuals with a cleft phenotype (overt cleft or previously identified orbicularis oris muscle defect) than in those with no underlying muscular defect (Fisher exact test, P = .014). Conclusion: Results suggest that the appearance of facial soft tissue during movement of the midface is moderated at least in part by underlying cleft risk factors, indicating certain facial movements as candidate physical markers for extension of the cleft phenotype. © Copyright 2013 American Cleft Palate-Craniofacial Association
    corecore