301 research outputs found

    Primary bone lymphoma: report of a case with multifocal skeletal involvement

    Get PDF
    Primary bone lymphoma is an uncommon tumour accounting for approximately 4-5% of extra nodal lymphoma and less than 1% of all Non-Hodgkin’s lymphoma. The radiographic appearance of primary bone lymphoma is variable. As lesions frequently resemble other disease processes namely chronic osteomyelitis and metastases, further imaging evaluation and histopathological examination allow early identification for appropriate treatment. The authors present a case of anaplastic large cell lymphoma of bone presenting with multifocal osseus involvement

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    From rehabilitation to recovery: protocol for a randomised controlled trial evaluating a goal-based intervention to reduce depression and facilitate participation post-stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is much discourse in healthcare about the importance of client-centred rehabilitation, however in the realm of community-based therapy post-stroke there has been little investigation into the efficacy of goal-directed practice that reflects patients' valued activities. In addition, the effect of active involvement of carers in such a rehabilitation process and their subsequent contribution to functional and emotional recovery post-stroke is unclear. In community based rehabilitation, interventions based on patients' perceived needs may be more likely to alter such outcomes. In this paper, we describe the methodology of a randomised controlled trial of an integrated approach to facilitating patient goal achievement in the first year post-stroke. The effectiveness of this intervention in reducing the severity of post-stroke depression, improving participation status and health-related quality of life is examined. The impact on carers is also examined.</p> <p>Methods/Design</p> <p>Patients (and their primary carers, if available) are randomly allocated to an intervention or control arm of the study. The intervention is multimodal and aims to screen for adverse stroke sequelae and address ways to enhance participation in patient-valued activities. Intervention methods include: telephone contacts, written information provision, home visitation, and contact with treating health professionals, with further relevant health service referrals as required. The control involves treatment as usual, as determined by inpatient and community rehabilitation treating teams. Formal blinded assessments are conducted at discharge from inpatient rehabilitation, and at six and twelve months post-stroke. The primary outcome is depression. Secondary outcome measures include participation and activity status, health-related quality of life, and self-efficacy.</p> <p>Discussion</p> <p>The results of this trial will assist with the development of a model for community-based rehabilitation management for stroke patients and their carers, with emphasis on goal-directed practice to enhance home and community participation status. Facilitation of participation in valued activities may be effective in reducing the incidence or severity of post-stroke depression, as well as enhancing the individual's perception of their health-related quality of life. The engagement of carers in the rehabilitation process will enable review of the influence of the broader social context on recovery.</p> <p>Trial registration</p> <p>Australia and New Zealand Clinical Trials Register (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12608000042347.aspx">ACTRN12608000042347</a></p

    HIV-1 Infection of DC: Evidence for the Acquisition of Virus Particles from Infected T Cells by Antigen Uptake Mechanism

    Get PDF
    Dendritic cells (DC) play a pivotal role in transmission and dissemination of HIV-1. Earlier studies reported that DC present at the site of infection trap virus particles via DC-SIGN and transfer the virus to the interacting naïve T cells. This prompted us to ask the question whether DC could acquire virus from infected T cells during DC-T cell interaction. To address this, we investigated the likely transfer of virus from HIV-1 infected T cells to DC and the underlying mechanisms involved. Results indicate that DC acquire virus from infected T cells via antigen uptake mechanism and this results in infection of DC with expression of proteins directed by viral DNA. Further studies with HIV-1 lacking the Env protein also resulted in infection of DC. The use of antibodies against DC-SIGN and DC-SIGN-R ruled out a role for receptor in the infection of DC. Additional data show that DC infection is directly correlated with the ability of DC to take up antigen from infected T cells. Overall, these studies provide evidence to suggest that HIV-1, besides infecting immune cells, also utilizes immunological mechanism(s) to acquire and disseminate virus

    Effect of B7.1 Costimulation on T-Cell Based Immunity against TAP-Negative Cancer Can Be Facilitated by TAP1 Expression

    Get PDF
    Tumors deficient in expression of the transporter associated with antigen processing (TAP) usually fail to induce T-cell-mediated immunity and are resistant to T-cell lysis. However, we have found that introduction of the B7.1 gene into TAP-negative (TAP−) or TAP1-transfected (TAP1+) murine lung carcinoma CMT.64 cells can augment the capacity of the cells to induce a protective immune response against wild-type tumor cells. Differences in the strength of the protective immune responses were observed between TAP− and TAP1+ B7.1 expressing CMT.64 cells depending on the doses of γ-irradiated cell immunization. While mice immunized with either high or low dose of B7.1-expressing TAP1+ cells rejected TAP− tumors, only high dose immunization with B7.1-expressing TAP− cells resulted in tumor rejection. The induced protective immunity was T-cell dependent as demonstrated by dramatically reduced antitumor immunity in mice depleted of CD8 or CD4 cells. Augmentation of T-cell mediated immune response against TAP− tumor cells was also observed in a virally infected tumor cell system. When mice were immunized with a high dose of γ-irradiated CMT.64 cells infected with vaccinia viruses carrying B7.1 and/or TAP1 genes, we found that the cells co-expressing B7.1 and TAP1, but not those expressing B7.1 alone, induced protective immunity against CMT.64 cells. In addition, inoculation with live tumor cells transfected with several different gene(s) revealed that only B7.1- and TAP1-coexpressing tumor cells significantly decreased tumorigenicity. These results indicate that B7.1-provoked antitumor immunity against TAP− cancer is facilitated by TAP1-expression, and thus both genes should be considered for cancer therapy in the future

    Regulation of cell-to-cell communication mediated by astrocytic ATP in the CNS

    Get PDF
    It has become apparent that glial cells, especially astrocytes, not merely supportive but are integrative, being able to receive inputs, assimilate information and send instructive chemical signals to other neighboring cells including neurons. At first, the excitatory neurotransmitter glutamate was found to be a major extracellular messenger that mediates these communications because it can be released from astrocytes in a Ca2+-dependent manner, diffused, and can stimulate extra-synaptic glutamate receptors in adjacent neurons, leading to a dynamic modification of synaptic transmission. However, recently extracellular ATP has come into the limelight as an important extracellular messenger for these communications. Astrocytes express various neurotransmitter receptors including P2 receptors, release ATP in response to various stimuli and respond to extracellular ATP to cause various physiological responses. The intercellular communication “Ca2+ wave” in astrocytes was found to be mainly mediated by the release of ATP and the activation of P2 receptors, suggesting that ATP is a dominant “gliotransmitter” between astrocytes. Because neurons also express various P2 receptors and synapses are surrounded by astrocytes, astrocytic ATP could affect neuronal activities and even dynamically regulate synaptic transmission in adjacent neurons as if forming a “tripartite synapse” In this review, we summarize the role of astrocytic ATP, as compared with glutamate, in gliotransmission and synaptic transmission in neighboring cells, mainly focusing on the hippocampus. Dynamic communication between astrocytes and neurons mediated by ATP would be a key event in the processing or integration of information in the CNS
    corecore