70 research outputs found

    Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All polypeptide backbones have the potential to form amyloid fibrils, which are associated with a number of degenerative disorders. However, the likelihood that amyloidosis would actually occur under physiological conditions depends largely on the amino acid composition of a protein. We explore using a naive Bayesian classifier and a weighted decision tree for predicting the amyloidogenicity of immunoglobulin sequences.</p> <p>Results</p> <p>The average accuracy based on leave-one-out (LOO) cross validation of a Bayesian classifier generated from 143 amyloidogenic sequences is 60.84%. This is consistent with the average accuracy of 61.15% for a holdout test set comprised of 103 AM and 28 non-amyloidogenic sequences. The LOO cross validation accuracy increases to 81.08% when the training set is augmented by the holdout test set. In comparison, the average classification accuracy for the holdout test set obtained using a decision tree is 78.64%. Non-amyloidogenic sequences are predicted with average LOO cross validation accuracies between 74.05% and 77.24% using the Bayesian classifier, depending on the training set size. The accuracy for the holdout test set was 89%. For the decision tree, the non-amyloidogenic prediction accuracy is 75.00%.</p> <p>Conclusions</p> <p>This exploratory study indicates that both classification methods may be promising in providing straightforward predictions on the amyloidogenicity of a sequence. Nevertheless, the number of available sequences that satisfy the premises of this study are limited, and are consequently smaller than the ideal training set size. Increasing the size of the training set clearly increases the accuracy, and the expansion of the training set to include not only more derivatives, but more alignments, would make the method more sound. The accuracy of the classifiers may also be improved when additional factors, such as structural and physico-chemical data, are considered. The development of this type of classifier has significant applications in evaluating engineered antibodies, and may be adapted for evaluating engineered proteins in general.</p

    In Vivo Depletion of Lymphotoxin-Alpha Expressing Lymphocytes Inhibits Xenogeneic Graft-versus-Host-Disease

    Get PDF
    Graft-versus-host disease (GVHD) is a major barrier to successful allogeneic hematopoietic cell transplantation and is largely mediated by activated donor lymphocytes. Lymphotoxin (LT)-α is expressed by subsets of activated T and B cells, and studies in preclinical models demonstrated that targeted depletion of these cells with a mouse anti-LT-α monoclonal antibody (mAb) was efficacious in inhibiting inflammation and autoimmune disease. Here we demonstrate that LT-α is also upregulated on activated human donor lymphocytes in a xenogeneic model of GVHD and targeted depletion of these donor cells ameliorated GVHD. A depleting humanized anti-LT-α mAb, designated MLTA3698A, was generated that specifically binds to LT-α in both the soluble and membrane-bound forms, and elicits antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Using a human peripheral blood mononuclear cell transplanted SCID (Hu-SCID) mouse model of GVHD, the anti-human LT-α mAb specifically depleted activated LT-expressing human donor T and B cells, resulting in prolonged survival of the mice. A mutation in the Fc region, rendering the mAb incapable of mediating ADCC, abolished all in vitro and in vivo effects. These data support a role for using a depleting anti-LT-α antibody in treating immune diseases such as GVHD and autoimmune diseases

    Molecular imaging of angiogenesis with SPECT

    Get PDF
    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed

    A Functional Variant of the Dimethylarginine Dimethylaminohydrolase-2 Gene Is Associated with Insulin Sensitivity

    Get PDF
    Background: Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase, which was associated with insulin resistance. Dimethylarginine dimethylaminohydrolase (DDAH) is the major determinant of plasma ADMA. Examining data from the DIAGRAM+ (Diabetes Genetics Replication And Meta-analysis), we identified a variant (rs9267551) in the DDAH2 gene nominally associated with type 2 diabetes (P =3610 25). Methodology/Principal Findings: initially, we assessed the functional impact of rs9267551 in human endothelial cells (HUVECs), observing that the G allele had a lower transcriptional activity resulting in reduced expression of DDAH2 and decreased NO production in primary HUVECs naturally carrying it. We then proceeded to investigate whether this variant is associated with insulin sensitivity in vivo. To this end, two cohorts of nondiabetic subjects of European ancestry were studied. In sample 1 (n = 958) insulin sensitivity was determined by the insulin sensitivity index (ISI), while in sample 2 (n = 527) it was measured with a euglycemic-hyperinsulinemic clamp. In sample 1, carriers of the GG genotype had lower ISI than carriers of the C allele (67633 vs.79644; P = 0.003 after adjusting for age, gender, and BMI). ADMA levels were higher in subjects carrying the GG genotype than in carriers of the C allele (0.6860.14 vs. 0.5760.14 mmol/l; P = 0.04). In sample 2, glucose disposal was lower in GG carriers as compared with C carriers (9.364.1 vs. 11.064.2 mg6Kg 21 free fat mass6min 21; P = 0.009)

    Epidemiologic and clinical updates on impulse control disorders: a critical review

    Get PDF
    The article reviews the current knowledge about the impulse control disorders (ICDs) with specific emphasis on epidemiological and pharmacological advances. In addition to the traditional ICDs present in the DSM-IV—pathological gambling, trichotillomania, kleptomania, pyromania and intermittent explosive disorder—a brief description of the new proposed ICDs—compulsive–impulsive (C–I) Internet usage disorder, C–I sexual behaviors, C–I skin picking and C–I shopping—is provided. Specifically, the article summarizes the phenomenology, epidemiology and comorbidity of the ICDs. Particular attention is paid to the relationship between ICDs and obsessive–compulsive disorder (OCD). Finally, current pharmacological options for treating ICDs are presented and discussed

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link

    Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene.

    No full text
    The HER2 protooncogene encodes a 185-kD transmembrane phosphoglycoproteins, human epidermal growth factor receptor 2 (p185HER2), whose amplified expression on the cell surface can lead to malignant transformation. Overexpression of HER2/p185HER2 is strongly correlated with progression of human ovarian and breast carcinomas. Recent studies have shown that human T cells can be targeted with bispecific antibody to react against human tumor cells in vitro. We have developed a bispecific F(ab')2 antibody molecule consisting of a humanized arm with a specificity to p185HER2 linked to another arm derived from a murine anti-CD3 monoclonal antibody that we have cloned from UCHT1 hybridoma. The antigen-binding loops for the anti-CD3 were installed in the context of human variable region framework residues, thus forming a fully humanized BsF(ab')2 fragment. Additional variants were produced by replacement of amino acid residues located in light chain complementarity determining region 2 and heavy chain framework region 3 of the humanized anti-CD3 arm. Flow cytometry analysis showed that the bispecific F(ab')2 molecules can bind specifically to cells overexpressing p185HER2 and to normal human peripheral blood mononuclear cells bearing the CD3 surface marker. In additional experiments, the presence of bispecific F(ab')2 caused up to fourfold enhancement in the cytotoxic activities of human T cells against tumor cells overexpressing p185HER2 as determined by a 51Cr release assay. These bispecific molecules have a potential use as therapeutic agents for the treatment of cancer
    corecore