998 research outputs found

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Hsp90 governs dispersion and drug resistance of fungal biofilms

    Get PDF
    Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections

    Sensitivity Analysis for Not-at-Random Missing Data in Trial-Based Cost-Effectiveness Analysis : A Tutorial

    Get PDF
    Cost-effectiveness analyses (CEA) of randomised controlled trials are a key source of information for health care decision makers. Missing data are, however, a common issue that can seriously undermine their validity. A major concern is that the chance of data being missing may be directly linked to the unobserved value itself [missing not at random (MNAR)]. For example, patients with poorer health may be less likely to complete quality-of-life questionnaires. However, the extent to which this occurs cannot be ascertained from the data at hand. Guidelines recommend conducting sensitivity analyses to assess the robustness of conclusions to plausible MNAR assumptions, but this is rarely done in practice, possibly because of a lack of practical guidance. This tutorial aims to address this by presenting an accessible framework and practical guidance for conducting sensitivity analysis for MNAR data in trial-based CEA. We review some of the methods for conducting sensitivity analysis, but focus on one particularly accessible approach, where the data are multiply-imputed and then modified to reflect plausible MNAR scenarios. We illustrate the implementation of this approach on a weight-loss trial, providing the software code. We then explore further issues around its use in practice

    Supporting mental health, wellbeing and study skills in Higher Education:an online intervention system

    Get PDF
    Abstract Background Dealing with psychological and study skill difficulties can present a challenge for both Higher Education (HE) students, who suffer from them, but also for HE Institutions and their support services. Alternative means of support, such as online interventions, have been identified as cost-effective and efficient ways to provide inclusive support to HE students, removing many of the barriers to help-seeking as well as promoting mental health and wellbeing. Case presentation The current case study initially outlines the rigorous approach in the development of one such online intervention system, MePlusMe. It further highlights key features that constitute innovative delivery of evidence-based psychological and educational practice in the areas of mental health, promotion of wellbeing, support of mood and everyday functioning, and study-skills enhancement. Conclusions This case study aims to present the innovative features of MePlusMe in relation to current needs and evidence-basis. Finally, it presents future directions in the evaluation, assessment, and evidence of the fitness-for-purpose process

    Enteric Pathogens in Stored Drinking Water and on Caregiver's Hands in Tanzanian Households with and without Reported Cases of Child Diarrhea.

    Get PDF
    Diarrhea is one of the leading causes of mortality in young children. Diarrheal pathogens are transmitted via the fecal-oral route, and for children the majority of this transmission is thought to occur within the home. However, very few studies have documented enteric pathogens within households of low-income countries. The presence of molecular markers for three enteric viruses (enterovirus, adenovirus, and rotavirus), seven Escherichia coli virulence genes (ECVG), and human-specific Bacteroidales was assessed in hand rinses and household stored drinking water in Bagamoyo, Tanzania. Using a matched case-control study design, we examined the relationship between contamination of hands and water with these markers and child diarrhea. We found that the presence of ECVG in household stored water was associated with a significant decrease in the odds of a child within the home having diarrhea (OR = 0.51; 95% confidence interval 0.27-0.93). We also evaluated water management and hygiene behaviors. Recent hand contact with water or food was positively associated with detection of enteric pathogen markers on hands, as was relatively lower volumes of water reportedly used for daily hand washing. Enteropathogen markers in stored drinking water were more likely found among households in which the markers were also detected on hands, as well as in households with unimproved water supply and sanitation infrastructure. The prevalence of enteric pathogen genes and the human-specific Bacteroidales fecal marker in stored water and on hands suggests extensive environmental contamination within homes both with and without reported child diarrhea. Better stored water quality among households with diarrhea indicates caregivers with sick children may be more likely to ensure safe drinking water in the home. Interventions to increase the quantity of water available for hand washing, and to improve food hygiene, may reduce exposure to enteric pathogens in the domestic environment

    A call for transparent reporting to optimize the predictive value of preclinical research

    Get PDF
    The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Summary Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types

    Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion

    Full text link
    Natural biopolymers, such as DNA and proteins, have uniform microstructures with defined molecular weight, precise monomer sequence, and stereoregularity along the polymer main chain that affords them unique biological functions. To reproduce such structurally perfect polymers and understand the mechanism of specific functions through chemical approaches, researchers have proposed using synthetic polymers as an alternative due to their broad chemical diversity and relatively simple manipulation. Herein, we report a new methodology to prepare sequence-controlled and stereospecific oligomers using alternating radical chain growth and sequential photoinduced RAFT single unit monomer insertion (photo-RAFT SUMI). Two families of cyclic monomers, the indenes and the N-substituted maleimides, can be alternatively inserted into RAFT agents, one unit at a time, allowing the monomer sequence to be controlled through sequential and alternating monomer addition. Importantly, the stereochemistry of cyclic monomer insertion into the RAFT agents is found to be trans-selective along the main chains due to steric hindrance from the repeating monomer units. All investigated cyclic monomers provide such trans-selectivity, but analogous acyclic monomers give a mixed cis- and trans-insertion

    Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease

    Get PDF
    The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets
    corecore