19 research outputs found

    Neural dynamics of shooting decisions and the switch from freeze to fight

    Get PDF
    Real-life shooting decisions typically occur under acute threat and require fast switching between vigilant situational assessment and immediate fight-or-flight actions. Recent studies suggested that freezing facilitates action preparation and decision-making but the neurocognitive mechanisms remain unclear. We applied functional magnetic resonance imaging, posturographic and autonomic measurements while participants performed a shooting task under threat of shock. two independent studies, in unselected civilians (N = 22) and police recruits (N = 54), revealed that preparation for shooting decisions under threat is associated with postural freezing, bradycardia, midbrain activity (including the periaqueductal gray-PAG) and PAG-amygdala connectivity. Crucially, stronger activity in the midbrain/pAG during this preparatory stage of freezing predicted faster subsequent accurate shooting. Finally, the switch from preparation to active shooting was associated with tachycardia, perigenual anterior cingulate cortex (pgACC) activity and pgACC-amygdala connectivity. These findings suggest that threat-anticipatory midbrain activity centred around the PAG supports decision-making by facilitating action preparation and highlight the role of the pgACC when switching from preparation to action. These results translate animal models of the neural switch from freeze-to-action. In addition, they reveal a core neural circuit for shooting performance under threat and provide empirical evidence for the role of defensive reactions such as freezing in subsequent action decision-making

    Verbal instructions override the meaning of facial expressions

    Get PDF
    Psychological research has long acknowledged that facial expressions can implicitly trigger affective psychophysiological responses. However, whether verbal information can alter the meaning of facial emotions and corresponding response patterns has not been tested. This study examined emotional facial expressions as cues for instructed threat-of-shock or safety, with a focus on defensive responding. In addition, reversal instructions were introduced to test the impact of explicit safety instructions on fear extinction. Forty participants were instructed that they would receive unpleasant electric shocks, for instance, when viewing happy but not angry faces. In a second block, instructions were reversed (e.g., now angry faces cued shock). Happy, neutral, and angry faces were repeatedly presented, and auditory startle probes were delivered in half of the trials. The defensive startle reflex was potentiated for threat compared to safety cues. Importantly, this effect occurred regardless of whether threat was cued by happy or angry expressions. Although the typical pattern of response habituation was observed, defense activation to newly instructed threat cues remained significantly enhanced in the second part of the experiment, and it was more pronounced in more socially anxious participants. Thus, anxious individuals did not exhibit more pronounced defense activation compared to less anxious participants, but their defense activation was more persistent

    Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Get PDF
    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control

    Association of FKBP5 polymorphisms and resting-state activity in a frontotemporal–parietal network

    Get PDF
    The FKBP5 polymorphism is a key regulator of the glucocorticoid system underpinning stress responsivity, and risk alleles can increase vulnerability for developing posttraumatic stress disorder. To delineate the specific role of FKBP5 risk alleles unencumbered by the confounds of psychopathology, this study investigated whether high-risk alleles of the FKBP5 polymorphism are characterized by distinctive neural activity during resting state. Thirty-seven healthy participants were selected on the basis of four SNPs in the FKBP5 gene region (rs3800373, rs9296158, rs1360780 and rs9470080) to determine participants who were carriers of the FKBP5 high- and low-risk alleles. Spatial maps, power spectra and connectivity in neural networks active during resting state were assessed with functional magnetic resonance imaging (fMRI). During resting-state fMRI, FKBP5 low-risk allele group displayed more power in the low frequency range (<0.1 Hz) than the high-risk allele group, who had significantly more power in higher frequency bins (>0.15 Hz). This difference was apparent only in a frontotemporoparietal network underpinning salience detection and emotion processing. This study provides initial evidence that the risk alleles of the FKBP5 polymorphism are associated with different resting-state activity in a frontotemporal–parietal network, and may point to mechanisms underpinning high-risk carriers' vulnerability to severe stress reactions
    corecore