93 research outputs found

    Progesterone reduces erectile dysfunction in sleep-deprived spontaneously hypertensive rats

    Get PDF
    BACKGROUND: Paradoxical sleep deprivation (PSD) associated with cocaine has been shown to enhance genital reflexes (penile erection-PE and ejaculation-EJ) in Wistar rats. Since hypertension predisposes males to erectile dysfunction, the aim of the present study was to investigate the effects of PSD on genital reflexes in the spontaneously hypertensive rat (SHR) compared to the Wistar strain. We also extended our study to examine how PSD affect steroid hormone concentrations involved in genital events in both experimental models. METHODS: The first experiment investigated the effects of PSD on genital reflexes of Wistar and SHR rats challenged by saline and cocaine (n = 10/group). To further examine the impact of the PSD on concentrations of sexual hormones, we performed a hormonal analysis of testosterone and progesterone in the Wistar and in SHR strains. Since after PSD progesterone concentrations decreased in the SHR compared to the Wistar PSD group we extended our study by investigating whether progesterone (25 mg/kg or 50 mg/kg) or testosterone (0.5 mg/kg or 1.0 mg/kg) administration during PSD would have a facilitator effect on the occurrence of genital reflexes in this hypertensive strain. RESULTS: A 4-day period of PSD induced PE in 50% of the Wistar rats against 10% for the SHR. These genital reflexes was potentiated by cocaine in Wistar rats whereas this scenario did not promote significant enhancement in PE and EJ in hypertensive rats, and the percentage of SHR displaying genital reflexes still figured significantly lower than that of the Wistar strain. As for hormone concentrations, both sleep-deprived Wistar and SHR showed lower testosterone concentrations than their respective controls. Sleep deprivation promoted an increase in concentrations of progesterone in Wistar rats, whereas no significant alterations were found after PSD in the SHR strain, which did not present enhancement in erectile responses. In order to explore the role of progesterone in the occurrence of genital reflexes, SHR were treated daily during the sleep deprivation period with progesterone; after the administration of this hormone and challenge with cocaine, we observed a significant increase in erectile events compared with the vehicle PSD SHR+cocaine group. CONCLUSION: Our data showed that the low frequency of genital reflexes found in SHR sleep deprived rats may be attributed to the lower concentrations of progesterone in these rats, based on the observation that progesterone replacement increased genital reflexes in this strain

    Administration of Thimerosal to Infant Rats Increases Overflow of Glutamate and Aspartate in the Prefrontal Cortex: Protective Role of Dehydroepiandrosterone Sulfate

    Get PDF
    Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10–14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity

    Microspatial variability in community structure and photophysiology of calcified macroalgal microbiomes revealed by coupling of hyperspectral and high-resolution fluorescence imaging

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    PAK1 Protein Expression in the Auditory Cortex of Schizophrenia Subjects

    Get PDF
    Deficits in auditory processing are among the best documented endophenotypes in schizophrenia, possibly due to loss of excitatory synaptic connections. Dendritic spines, the principal post-synaptic target of excitatory projections, are reduced in schizophrenia. p21-activated kinase 1 (PAK1) regulates both the actin cytoskeleton and dendritic spine density, and is a downstream effector of both kalirin and CDC42, both of which have altered expression in schizophrenia. This study sought to determine if there is decreased auditory cortex PAK1 protein expression in schizophrenia through the use of quantitative western blots of 25 schizophrenia subjects and matched controls. There was no significant change in PAK1 level detected in the schizophrenia subjects in our cohort. PAK1 protein levels within subject pairs correlated positively with prior measures of total kalirin protein in the same pairs. PAK1 level also correlated with levels of a marker of dendritic spines, spinophilin. These latter two findings suggest that the lack of change in PAK1 level in schizophrenia is not due to limited sensitivity of our assay to detect meaningful differences in PAK1 protein expression. Future studies are needed to evaluate whether alterations in PAK1 phosphorylation states, or alterations in protein expression of other members of the PAK family, are present in schizophrenia

    Ectodermal Influx and Cell Hypertrophy Provide Early Growth for All Murine Mammary Rudiments, and Are Differentially Regulated among Them by Gli3

    Get PDF
    Mammary gland development starts in utero with one or several pairs of mammary rudiments (MRs) budding from the surface ectodermal component of the mammalian embryonic skin. Mice develop five pairs, numbered MR1 to MR5 from pectoral to inguinal position. We have previously shown that Gli3Xt-J/Xt-J mutant embryos, which lack the transcription factor Gli3, do not form MR3 and MR5. We show here that two days after the MRs emerge, Gli3Xt-J/Xt-J MR1 is 20% smaller, and Gli3Xt-J/Xt-J MR2 and MR4 are 50% smaller than their wild type (wt) counterparts. Moreover, while wt MRs sink into the underlying dermis, Gli3Xt-J/Xt-J MR4 and MR2 protrude outwardly, to different extents. To understand why each of these five pairs of functionally identical organs has its own, distinct response to the absence of Gli3, we determined which cellular mechanisms regulate growth of the individual MRs, and whether and how Gli3 regulates these mechanisms. We found a 5.5 to 10.7-fold lower cell proliferation rate in wt MRs compared to their adjacent surface ectoderm, indicating that MRs do not emerge or grow via locally enhanced cell proliferation. Cell-tracing experiments showed that surface ectodermal cells are recruited toward the positions where MRs emerge, and contribute to MR growth during at least two days. During the second day of MR development, peripheral cells within the MRs undergo hypertrophy, which also contributes to MR growth. Limited apoptotic cell death counterbalances MR growth. The relative contribution of each of these processes varies among the five MRs. Furthermore, each of these processes is impaired in the absence of Gli3, but to different extents in each MR. This differential involvement of Gli3 explains the variation in phenotype among Gli3Xt-J/Xt-J MRs, and may help to understand the variation in numbers and positions of mammary glands among mammals

    Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders

    Get PDF
    Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research

    Colocalization of Protein Kinase A with Adenylyl Cyclase Enhances Protein Kinase A Activity during Induction of Long-Lasting Long-Term-Potentiation

    Get PDF
    The ability of neurons to differentially respond to specific temporal and spatial input patterns underlies information storage in neural circuits. One means of achieving spatial specificity is to restrict signaling molecules to particular subcellular compartments using anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Disruption of protein kinase A (PKA) anchoring to AKAPs impairs a PKA-dependent form of long term potentiation (LTP) in the hippocampus. To investigate the role of localized PKA signaling in LTP, we developed a stochastic reaction-diffusion model of the signaling pathways leading to PKA activation in CA1 pyramidal neurons. Simulations investigated whether the role of anchoring is to locate kinases near molecules that activate them, or near their target molecules. The results show that anchoring PKA with adenylyl cyclase (which produces cAMP that activates PKA) produces significantly greater PKA activity, and phosphorylation of both inhibitor-1 and AMPA receptor GluR1 subunit on S845, than when PKA is anchored apart from adenylyl cyclase. The spatial microdomain of cAMP was smaller than that of PKA suggesting that anchoring PKA near its source of cAMP is critical because inactivation by phosphodiesterase limits diffusion of cAMP. The prediction that the role of anchoring is to colocalize PKA near adenylyl cyclase was confirmed by experimentally rescuing the deficit in LTP produced by disruption of PKA anchoring using phosphodiesterase inhibitors. Additional experiments confirm the model prediction that disruption of anchoring impairs S845 phosphorylation produced by forskolin-induced synaptic potentiation. Collectively, these results show that locating PKA near adenylyl cyclase is a critical function of anchoring

    Dendritic spine loss and synaptic alterations in Alzheimer's disease

    Full text link
    Dendritic spines are tiny protrusions along dendrites, which constitute major postsynaptic sites for excitatory synaptic transmission. These spines are highly motile and can undergo remodeling even in the adult nervous system. Spine remodeling and the formation of new synapses are activity-dependent processes that provide a basis for memory formation. A loss or alteration of these structures has been described in patients with neurodegenerative disorders such as Alzheimer's disease (AD), and in mouse models for these disorders. Such alteration is thought to be responsible for cognitive deficits long before or even in the absence of neuronal loss, but the underlying mechanisms are poorly understood. This review will describe recent findings and discoveries on the loss or alteration of dendritic spines induced by the amyloid beta (Abeta) peptide in the context of AD
    corecore