654 research outputs found

    Dynamic updating of hippocampal object representations reflects new conceptual knowledge

    Get PDF
    Concepts organize the relationship among individual stimuli or events by highlighting shared features. Often, new goals require updating conceptual knowledge to reflect relationships based on different goal-relevant features. Here, our aim is to determine how hippocampal (HPC) object representations are organized and updated to reflect changing conceptual knowledge. Participants learned two classification tasks in which successful learning required attention to different stimulus features, thus providing a means to index how representations of individual stimuli are reorganized according to changing task goals. We used a computational learning model to capture how people attended to goal-relevant features and organized object representations based on those features during learning. Using representational similarity analyses of functional magnetic resonance imaging data, we demonstrate that neural representations in left anterior HPC correspond with model predictions of concept organization. Moreover, we show that during early learning, when concept updating is most consequential, HPC is functionally coupled with prefrontal regions. Based on these findings, we propose that when task goals change, object representations in HPC can be organized in new ways, resulting in updated concepts that highlight the features most critical to the new goal

    Medial prefrontal cortex compresses concept representations through learning

    Get PDF
    Prefrontal cortex (PFC) is thought to support the ability to focus on goal-relevant information by filtering out irrelevant information, a process akin to dimensionality reduction. Here, we find direct evidence of goal-directed data compression within medial PFC during learning, such that the degree of neural compression predicts an individual's ability to selectively attend to concept-specific information. These findings suggest a domaingeneral mechanism of learning through compression in mPFC

    Building concepts one episode at a time: The hippocampus and concept formation

    Get PDF
    Concepts organize our experiences and allow for meaningful inferences in novel situations. Acquiring new concepts requires extracting regularities across multiple learning experiences, a process formalized in mathematical models of learning. These models posit a computational framework that has increasingly aligned with the expanding repertoire of functions associated with the hippocampus. Here, we propose the Episodes-to-Concepts (EpCon) theoretical model of hippocampal function in concept learning and review evidence for the hippocampal computations that support concept formation including memory integration, attentional biasing, and memory-based prediction error. We focus on recent studies that have directly assessed the hippocampal role in concept learning with an innovative approach that combines computational modeling and sophisticated neuroimaging measures. Collectively, this work suggests that the hippocampus does much more than encode individual episodes; rather, it adaptively transforms initially-encoded episodic memories into organized conceptual knowledge that drives novel behavior

    Genotype List String: a grammar for describing HLA and KIR genotyping results in a text string

    Get PDF
    Knowledge of an individual's human leukocyte antigen (HLA) genotype is essential for modern medical genetics, and is crucial for hematopoietic stem cell and solid-organ transplantation. However, the high levels of polymorphism known for the HLA genes make it difficult to generate an HLA genotype that unambiguously identifies the alleles that are present at a given HLA locus in an individual. For the last 20 years, the histocompatibility and immunogenetics community has recorded this HLA genotyping ambiguity using allele codes developed by the National Marrow Donor Program (NMDP). While these allele codes may have been effective for recording an HLA genotyping result when initially developed, their use today results in increased ambiguity in an HLA genotype, and they are no longer suitable in the era of rapid allele discovery and ultra-high allele polymorphism. Here, we present a text string format capable of fully representing HLA genotyping results. This Genotype List (GL) String format is an extension of a proposed standard for reporting killer-cell immunoglobulin-like receptor (KIR) genotype data that can be applied to any genetic data that use a standard nomenclature for identifying variants. The GL String format uses a hierarchical set of operators to describe the relationships between alleles, lists of possible alleles, phased alleles, genotypes, lists of possible genotypes, and multilocus unphased genotypes, without losing typing information or increasing typing ambiguity. When used in concert with appropriate tools to create, exchange, and parse these strings, we anticipate that GL Strings will replace NMDP allele codes for reporting HLA genotypes

    Lars Hétta’s miniature world: Sámi prison op-art autoethnography

    Get PDF
    This article examines a collection of miniature objects, now held in museum collections, which were originally made by a SĂĄmi political prisoner in Norway during the mid-19th century as part of an educational programme. The author draws on recent developments in the theory of miniaturization to consider these miniatures as examples of prison op-art autoethnography: communicative devices which seek to address broad and complex social issues through the process of the creation and distribution of semiophorically functionless mimetic objects of reduced scale and complexity, and which reflect the restrictions of incarcerated artistic expression and the questions this raises regarding authenticity and hybridity

    Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts.

    Get PDF
    The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGÎłC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNÎł in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system

    Invaders in hot water: a simple decontamination method to prevent the accidental spread of aquatic invasive non-native species.

    Get PDF
    Watersports equipment can act as a vector for the introduction and spread of invasive non native species (INNS) in freshwater environments. To support advice given to recreational water users under the UK Government’s Check Clean Dry biosecurity campaign and ensure its effectiveness at killing a range of aquatic INNS, we conducted a survival experiment on seven INNS which pose a high risk to UK freshwaters. The efficacy of exposure to hot water (45 °C, 15 min) was tested as a method by which waters users could ‘clean’ their equipment and was compared to drying and a control group (no treatment). Hot water had caused 99 % mortality across all species 1 h after treatment and was more effective than drying at all time points (1 h: χ2 = 117.24, p < 0.001; 1 day χ2 = 95.68, p < 0.001; 8 days χ2 = 12.16, p < 0.001 and 16 days χ2 = 7.58, p < 0.001). Drying caused significantly higher mortality than the control (no action) from day 4 (χ2 = 8.49, p < 0.01) onwards. In the absence of hot water or drying, 6/7 of these species survived for 16 days, highlighting the importance of good biosecurity practice to reduce the risk of accidental spread. In an additional experiment the minimum lethal temperature and exposure time in hot water to cause 100 % mortality in American signal crayfish (Pacifastacus leniusculus), was determined to be 5 min at 40 °C. Hot water provides a simple, rapid and effective method to clean equipment. We recommend that it is advocated in future biosecurity awareness campaigns

    Human papillomavirus in amniotic fluid

    Get PDF
    BACKGROUND: There is evidence to suggest that human papillomavirus (HPV) can cross the placenta resulting in in-utero transmission. The goal of this study was to determine if HPV can be detected in amniotic fluid from women with intact amniotic membranes. METHODS: Residual amniotic fluid and cultured cell pellets from amniocentesis performed for prenatal diagnosis were used. PGMY09/11 L1 consensus primers and GP5+/GP6+ primers were used in a nested polymerase chain reaction assay for HPV. RESULTS: There were 146 paired samples from 142 women representing 139 singleton pregnancies, 2 twin pregnancies, and 1 triplet pregnancy. The women were 78% Caucasian, 5% African American, 14% Asian, and 2% Hispanic. The average age was 35.2 years with a range of 23–55 years. All samples were ÎČ-globin positive. HPV was not detected in any of the paired samples. CONCLUSION: Given the age range, race, and ethnicity of the study population, one would anticipate some evidence of HPV if it could easily cross the placenta, but there was none

    Hot embossing for fabrication of a microfluidic 3D cell culture

    Get PDF
    Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfludic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact.National Cancer Institute (U.S.) (award R21CA140096)Charles Stark Draper Laboratory (IR&D Grant
    • 

    corecore