167 research outputs found

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Using distinct molecular signatures of human monocytes and dendritic cells to predict adjuvant activity and pyrogenicity of TLR agonists

    Get PDF
    We present a systematic study that defines molecular profiles of adjuvanticity and pyrogenicity induced by agonists of human Toll-like receptor molecules in vitro. Using P3CSK4, Lipid A and Poly I:C as model adjuvants we show that all three molecules enhance the expansion of IFNΞ³+/CD4+ T cells from their naΓ―ve precursors following priming with allogeneic DC in vitro. In contrast, co-culture of naive CD4+ T cells with allogeneic monocytes and TLR2/TLR4 agonists only resulted in enhanced T cell proliferation. Distinct APC molecular signatures in response to each TLR agonist underline the dual effect observed on T cell responses. Using protein and gene expression assays, we show that TNF-Ξ± and CXCL10 represent DC-restricted molecular signatures of TLR2/TLR4 and TLR3 activation, respectively, in sharp contrast to IL-6 produced by monocytes upon stimulation with P3CSK4 and Lipid A. Furthermore, although all TLR agonists are able to up-regulate proIL-1Ξ² specific gene in both cell types, only monocyte activation with Lipid A results in detectable IL-1Ξ² release. These molecular profiles, provide a simple screen to select new immune enhancers of human Th1 responses suitable for clinical application

    CD4+ T Cell Effects on CD8+ T Cell Location Defined Using Bioluminescence

    Get PDF
    T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are β€œhelped” by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell β€œhelp” is to program the homing potential of CD8+ T cells

    Characterization of the innate immune response to chronic aspiration in a novel rodent model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although chronic aspiration has been associated with several pulmonary diseases, the inflammatory response has not been characterized. A novel rodent model of chronic aspiration was therefore developed in order to investigate the resulting innate immune response in the lung.</p> <p>Methods</p> <p>Gastric fluid or normal saline was instilled into the left lung of rats (n = 48) weekly for 4, 8, 12, or 16 weeks (n = 6 each group). Thereafter, bronchoalveolar lavage specimens were collected and cellular phenotypes and cytokine concentrations of IL-1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-gamma, TNF-alpha, and TGF-beta were determined.</p> <p>Results</p> <p>Following the administration of gastric fluid but not normal saline, histologic specimens exhibited prominent evidence of giant cells, fibrosis, lymphocytic bronchiolitis, and obliterative bronchiolitis. Bronchoalveolar lavage specimens from the left (treated) lungs exhibited consistently higher macrophages and T cells with an increased CD4:CD8 T cell ratio after treatment with gastric fluid compared to normal saline. The concentrations of IL-1alpha, IL-1beta, IL-2, TNF-alpha and TGF-beta were increased in bronchoalveolar lavage specimens following gastric fluid aspiration compared to normal saline.</p> <p>Conclusion</p> <p>This represents the first description of the pulmonary inflammatory response that results from chronic aspiration. Repetitive aspiration events can initiate an inflammatory response consisting of macrophages and T cells that is associated with increased TGF-beta, TNF-alpha, IL-1alpha, IL-1beta, IL-2 and fibrosis in the lung. Combined with the observation of gastric fluid-induced lymphocyitic bronchiolitis and obliterative bronchiolitis, these findings further support an association between chronic aspiration and pulmonary diseases, such as obliterative bronchiolitis, pulmonary fibrosis, and asthma.</p

    A Novel DC Therapy with Manipulation of MKK6 Gene on Nickel Allergy in Mice

    Get PDF
    BACKGROUND: Although the activation of dermal dendritic cells (DCs) or Langerhans cells (LCs) via p38 mitogen-activated protein kinase (MAPK) plays a crucial role in the pathogenesis of metal allergy, the in vivo molecular mechanisms have not been identified and a possible therapeutic strategy using the control of dermal DCs or LCs has not been established. In this study, we focused on dermal DCs to define the in vivo mechanisms of metal allergy pathogenesis in a mouse nickel (Ni) allergy model. The effects of DC therapy on Ni allergic responses were also investigated. METHODS AND FINDING: The activation of dermal DCs via p38 MAPK triggered a T cell-mediated allergic immune response in this model. In the MAPK signaling cascade in DCs, Ni potently phosphorylated MAP kinase kinase 6 (MKK6) following increased DC activation. Ni-stimulated DCs could prime T cell activation to induce Ni allergy. Interestingly, when MKK6 gene-transfected DCs were transferred into the model mice, a more pronounced allergic reaction was observed. In addition, injection of short interfering (si) RNA targeting the MKK6 gene protected against a hypersensitivity reaction after Ni immunization. The cooperative action between T cell activation and MKK6-mediated DC activation by Ni played an important role in the development of Ni allergy. CONCLUSIONS: DC activation by Ni played an important role in the development of Ni allergy. Manipulating the MKK6 gene in DCs may be a good therapeutic strategy for dermal Ni allergy

    Supernatant from Bifidobacterium Differentially Modulates Transduction Signaling Pathways for Biological Functions of Human Dendritic Cells

    Get PDF
    International audienceBACKGROUND:Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn) could induce maturation, high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-activated protein kinases (MAPK), glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K) pathways on biological functions of human monocyte-derived DCs treated with BbC50sn.METHODOLOGY/PRINCIPAL FINDINGS:DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50sn, lipopolysaccharide (LPS) or Zymosan, with or without specific inhibitors of p38MAPK (SB203580), ERK (PD98059), PI3K (LY294002) and GSK3 (SB216763). We found that 1) the PI3K pathway was positively involved in the prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively regulated DC survival; 2) p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which negatively regulated DC maturation; 3) ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3 that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4) BbC50sn induced a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS.CONCLUSION/SIGNIFICANCE:We report for the first time that a fermentation product of a bifidobacteria can differentially activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the specific inflammatory immune responses to pathogen bacteria

    Keratinocytes Determine Th1 Immunity during Early Experimental Leishmaniasis

    Get PDF
    Experimental leishmaniasis is an excellent model system for analyzing Th1/Th2 differentiation. Resistance to Leishmania (L.) major depends on the development of a L. major specific Th1 response, while Th2 differentiation results in susceptibility. There is growing evidence that the microenvironment of the early affected tissue delivers the initial triggers for Th-cell differentiation. To analyze this we studied differential gene expression in infected skin of resistant and susceptible mice 16h after parasite inoculation. Employing microarray technology, bioinformatics, laser-microdissection and in-situ-hybridization we found that the epidermis was the major source of immunomodulatory mediators. This epidermal gene induction was significantly stronger in resistant mice especially for several genes known to promote Th1 differentiation (IL-12, IL-1Ξ², osteopontin, IL-4) and for IL-6. Expression of these cytokines was temporally restricted to the crucial time of Th1/2 differentiation. Moreover, we revealed a stronger epidermal up-regulation of IL-6 in the epidermis of resistant mice. Accordingly, early local neutralization of IL-4 in resistant mice resulted in a Th2 switch and mice with a selective IL-6 deficiency in non-hematopoietic cells showed a Th2 switch and dramatic deterioration of disease. Thus, our data indicate for the first time that epidermal cytokine expression is a decisive factor in the generation of protective Th1 immunity and contributes to the outcome of infection with this important human pathogen

    Effects of Human Respiratory Syncytial Virus, Metapneumovirus, Parainfluenza Virus 3 and Influenza Virus on CD4+ T Cell Activation by Dendritic Cells

    Get PDF
    BACKGROUND: Human respiratory syncytial virus (HRSV), and to a lesser extent human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), re-infect symptomatically throughout life without antigenic change, suggestive of incomplete immunity. One causative factor is thought to be viral interference with dendritic cell (DC)-mediated stimulation of CD4+ T cells. METHODOLOGY, PRINCIPAL FINDINGS: We infected human monocyte-derived DC with purified HRSV, HMPV, HPIV3, or influenza A virus (IAV) and compared their ability to induce activation and proliferation of autologous CD4+ T cells in vitro. IAV was included because symptomatic re-infection without antigenic change is less frequent, suggesting that immune protection is more complete and durable. We examined virus-specific memory responses and superantigen-induced responses by multiparameter flow cytometry. Live virus was more stimulatory than inactivated virus in inducing DC-mediated proliferation of virus-specific memory CD4+ T cells, suggesting a lack of strong suppression by live virus. There were trends of increasing proliferation in the order: HMPV<HRSV<HPIV3<IAV, and greater production of interferon-Ξ³ and tumor necrosis factor-Ξ± by proliferating cells in response to IAV, but differences were not significant. Exposure of DC to HRSV, HPIV3, or IAV reduced CD4+ T cell proliferation in response to secondary stimulus with superantigen, but the effect was transitory and greatest for IAV. T cell cytokine production was similar, with no evidence of Th2 or Th17 skewing. CONCLUSIONS, SIGNIFICANCE: Understanding the basis for the ability of HRSV in particular to symptomatically re-infect without significant antigenic change is of considerable interest. The present results show that these common respiratory viruses are similar in their ability to induce DC to activate CD4+ T cells. Thus, the results do not support the common model in which viral suppression of CD4+ T cell activation and proliferation by HRSV, HMPV, and HPIV3 is a major factor in the difference in re-infectability compared to IAV

    Functional Impairment of Human Myeloid Dendritic Cells during Schistosoma haematobium Infection

    Get PDF
    Chronic Schistosoma infection is often characterized by a state of T cell hyporesponsiveness of the host. Suppression of dendritic cell (DC) function could be one of the mechanisms underlying this phenomenon, since Schistosoma antigens are potent modulators of dendritic cell function in vitro. Yet, it remains to be established whether DC function is modulated during chronic human Schistosoma infection in vivo. To address this question, the effect of Schistosoma haematobium infection on the function of human blood DC was evaluated. We found that plasmacytoid (pDC) and myeloid DC (mDC) from infected subjects were present at lower frequencies in peripheral blood and that mDC displayed lower expression levels of HLA-DR compared to those from uninfected individuals. Furthermore, mDC from infected subjects, but not pDC, were found to have a reduced capacity to respond to TLR ligands, as determined by MAPK signaling, cytokine production and expression of maturation markers. Moreover, the T cell activating capacity of TLR-matured mDC from infected subjects was lower, likely as a result of reduced HLA-DR expression. Collectively these data show that S. haematobium infection is associated with functional impairment of human DC function in vivo and provide new insights into the underlying mechanisms of T cell hyporesponsiveness during chronic schistosomiasis
    • …
    corecore