281 research outputs found

    Response of Soil Respiration to Soil Temperature and Moisture in a 50-Year-Old Oriental Arborvitae Plantation in China

    Get PDF
    China possesses large areas of plantation forests which take up great quantities of carbon. However, studies on soil respiration in these plantation forests are rather scarce and their soil carbon flux remains an uncertainty. In this study, we used an automatic chamber system to measure soil surface flux of a 50-year-old mature plantation of Platycladus orientalis at Jiufeng Mountain, Beijing, China. Mean daily soil respiration rates (Rs) ranged from 0.09 to 4.87 µmol CO2 m−2s−1, with the highest values observed in August and the lowest in the winter months. A logistic model gave the best fit to the relationship between hourly Rs and soil temperature (Ts), explaining 82% of the variation in Rs over the annual cycle. The annual total of soil respiration estimated from the logistic model was 645±5 g C m−2 year−1. The performance of the logistic model was poorest during periods of high soil temperature or low soil volumetric water content (VWC), which limits the model's ability to predict the seasonal dynamics of Rs. The logistic model will potentially overestimate Rs at high Ts and low VWC. Seasonally, Rs increased significantly and linearly with increasing VWC in May and July, in which VWC was low. In the months from August to November, inclusive, in which VWC was not limiting, Rs showed a positively exponential relationship with Ts. The seasonal sensitivity of soil respiration to Ts (Q10) ranged from 0.76 in May to 4.38 in October. It was suggested that soil temperature was the main determinant of soil respiration when soil water was not limiting

    Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use

    Get PDF
    BACKGROUND: The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO(2 )from permanently and seasonally frozen soils are essential part of annual carbon budget varying from 5 to 50%. The mechanisms of the freeze-thaw activation are not absolutely clear and need clarifying. We investigated the effect of repeated freezing-thawing events on CO(2 )emission from intact arable and forest soils (Luvisols, loamy silt; Central Germany) at different moisture (65% and 100% of WHC). RESULTS: Due to the measurement of the CO(2 )flux in two hours intervals, the dynamics of CO(2 )emission during freezing-thawing events was described in a detailed way. At +10°C (initial level) in soils investigated, carbon dioxide emission varied between 7.4 to 43.8 mg C m(-2)h(-1 )depending on land use and moisture. CO(2 )flux from the totally frozen soil never reached zero and amounted to 5 to 20% of the initial level, indicating that microbial community was still active at -5°C. Significant burst of CO(2 )emission (1.2–1.7-fold increase depending on moisture and land use) was observed during thawing. There was close linear correlation between CO(2 )emission and soil temperature (R(2 )= 0.86–0.97, P < 0.001). CONCLUSION: Our investigations showed that soil moisture and land use governed the initial rate of soil respiration, duration of freezing and thawing of soil, pattern of CO(2 )dynamics and extra CO(2 )fluxes. As a rule, the emissions of CO(2 )induced by freezing-thawing were more significant in dry soils and during the first freezing-thawing cycle (FTC). The acceleration of CO(2 )emission was caused by different processes: the liberation of nutrients upon the soil freezing, biological activity occurring in unfrozen water films, and respiration of cold-adapted microflora

    The charcoal trap: Miombo forests and the energy needs of people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a <it>miombo </it>woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies.</p> <p>Results</p> <p>The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha<sup>-1</sup>, while the disturbed plot only contained 24 t ha<sup>-1</sup>. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m<sup>-2 </sup>y<sup>-1</sup>, in the first and 90 ± 16 g C m<sup>-2 </sup>in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the <it>miombo </it>woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO<sub>2 </sub>y<sup>-1</sup>. This is due to poor forest regeneration, although the resilience of <it>miombo </it>woodlands is high. Better post-harvest management could change this situation.</p> <p>Conclusions</p> <p>We argue that protection of <it>miombo </it>woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y<sup>-1 </sup>of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other of its African neighbours. The question arises whether and how money and technology transfer to increase regenerative electrical power generation should become part of a post-Kyoto process. Furthermore, better inventory data are urgently required to improve knowledge about the current state of the woodland usage and recovery. Net greenhouse gas emissions could be reduced substantially by improving the post-harvest management, charcoal production technology and/or providing alternative energy supply.</p

    The Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland

    Get PDF
    BACKGROUND: The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration. CONCLUSIONS/SIGNIFICANCE: These plants' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands

    Simulating the carbon balance of a temperate larch forest under various meteorological conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changes in the timing of phenological events may cause the annual carbon budget of deciduous forests to change. Therefore, one should take such events into account when evaluating the effects of global warming on deciduous forests. In this article, we report on the results of numerical experiments done with a model that includes a phenological module simulating the timing of bud burst and other phenological events and estimating maximum leaf area index.</p> <p>Results</p> <p>This study suggests that the negative effects of warming on tree productivity (net primary production) outweigh the positive effects of a prolonged growing season. An increase in air temperature by 3°C (5°C) reduces cumulative net primary production by 21.3% (34.2%). Similarly, cumulative net ecosystem production (the difference between cumulative net primary production and heterotrophic respiration) decreases by 43.5% (64.5%) when temperatures are increased by 3°C (5°C). However, the positive effects of CO<sub>2 </sub>enrichment (2 × CO<sub>2</sub>) outweigh the negative effects of warming (<5°C).</p> <p>Conclusion</p> <p>Although the model was calibrated and validated for a specific forest ecosystem, the implications of the study may be extrapolated to deciduous forests in cool-temperate zones. These forests share common features, and it can be conjectured that carbon stocks would increase in such forests in the face of doubled CO<sub>2 </sub>and increased temperatures as long as the increase in temperature does not exceed 5°C.</p

    Coexisting Cyclic Parthenogens Comprise a Holocene Species Flock in Eubosmina

    Get PDF
    Background: Mixed breeding systems with extended clonal phases and weak sexual recruitment are widespread in nature but often thought to impede the formation of discrete evolutionary clusters. Thus, cyclic parthenogens, such as cladocerans and rotifers, could be predisposed to ‘‘species problems’ ’ and a lack of discrete species. However, species flocks have been proposed for one cladoceran group, Eubosmina, where putative species are sympatric, and there is a detailed paleolimnological record indicating a Holocene age. These factors make the Eubosmina system suitable for testing the hypotheses that extended clonal phases and weak sexual recruitment inhibit speciation. Although common garden experiments have revealed a genetic component to the morphotypic variation, the evolutionary significance of the morphotypes remains controversial. Methodology/Principal Findings: In the present study, we tested the hypothesis of a single polymorphic species (i.e., mixing occurs but selection maintains genes for morphology) in four northern European lakes where the morphotypes coexist. Our evidence is based on nuclear DNA sequence, mitochondrial DNA sequence, and morphometric analysis of coexisting morphotypes. We found significant genetic differentiation, genealogical exclusivity, and morphometric differentiation for coexisting morphotypes. Conclusions: We conclude that the studied morphotypes represent a group of young species undergoing speciation wit
    • …
    corecore