66 research outputs found

    Phase 2 Study of Pomalidomide (CC-4047) Monotherapy for Children and Young Adults With Recurrent or Progressive Primary Brain Tumors

    Get PDF
    INTRODUCTION: Treatment of recurrent primary pediatric brain tumors remains a major challenge, with most children succumbing to their disease. We conducted a prospective phase 2 study investigating the safety and efficacy of pomalidomide (POM) in children and young adults with recurrent and progressive primary brain tumors. BACKGROUND: METHODS: Patients with recurrent and progressive high-grade glioma (HGG), diffuse intrinsic pontine glioma (DIPG), ependymoma, or medulloblastoma received POM 2.6 mg/m2/day (the recommended phase 2 dose [RP2D]) on days 1-21 of a 28-day cycle. A Simon’s Optimal 2-stage design was used to determine efficacy. Primary endpoints included objective response (OR) and long-term stable disease (LTSD) rates. Secondary endpoints included duration of response, progression-free survival (PFS), overall survival (OS), and safety. RESULTS: 46 patients were evaluable for response (HGG, n = 19; DIPG, ependymoma, and medulloblastoma, n = 9 each). Two patients with HGG achieved OR or LTSD (10.5% [95% CI, 1.3%-33.1%]; 1 partial response and 1 LTSD) and 1 patient with ependymoma had LTSD (11.1% [95% CI, 0.3%-48.2%]). There were no ORs or LTSD in the DIPG or medulloblastoma cohorts. The median PFS for patients with HGG, DIPG, ependymoma, and medulloblastoma was 7.86, 11.29, 8.43, and 8.43 weeks, respectively. Median OS was 5.06, 3.78, 12.02, and 11.60 months, respectively. Neutropenia was the most common grade 3/4 adverse event. CONCLUSIONS: Treatment with POM monotherapy did not meet the primary measure of success in any cohort. Future studies are needed to evaluate if POM would show efficacy in tumors with specific molecular signatures or in combination with other anticancer agents. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT03257631; EudraCT, identifier 2016-002903-25

    The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock

    Get PDF
    RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5' end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered

    Glomerular angiotensinogen protein is enhanced in pediatric IgA nephropathy

    Get PDF
    Enhanced intrarenal renin-angiotensin system (RAS) is implicated in the development and progression of renal injury. To investigate whether angiotensinogen (AGT) expression is involved in glomerular RAS activity and glomerular injury, we examined glomerular AGT expression and its correlation with expression of other RAS components, and levels of glomerular injury in samples from patients with immunoglobulin A nephropathy (IgAN) (23) and minor glomerular abnormalities (MGA) (8). Immunohistochemistry showed that AGT protein was highly expressed by glomerular endothelial cells (GEC) and mesangial cells in nephritic glomeruli of IgAN compared with glomeruli of MGA. Levels of glomerular AGT protein were well correlated with levels of glomerular angiotensin II (ang II), transforming growth factor-β (TGF-β), α-smooth-muscle actin, glomerular cell number, and glomerulosclerosis score but not with those of glomerular angiotensin-converting enzyme and ang II type 1 receptor. Real-time polymerase chain reaction (RT-PCR) and Western blot analyses using cultured human GEC indicated that ang II upregulated AGT messenger ribonucleic acid (mRNA) and protein expression in a dose- and time-dependent manner. These data suggest that activated glomerular AGT expression is likely involved in elevated local ang II production and, thereby, may contribute to increased TGF-β production and development of glomerular injury in IgAN. Augmentation of GEC-AGT production with ang II stimulation might drive further glomerular injury in a positive-feedback loop

    Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus using spray drying

    Get PDF
    Three different milk proteins — skim milk powder (SMP), sodium caseinate (SC) and whey protein concentrate (WPC) — were tested for their ability to stabilize microencapsulated L. acidophilus produced using spray drying. Maltodextrin (MD) was used as the primary wall material in all samples, milk protein as the secondary wall material (7:3 MD/milk protein ratio) and the simple sugars, d-glucose and trehalose were used as tertiary wall materials (8:2:2 MD/protein/sugar ratio) combinations of all wall materials were tested for their ability to enhance the microbial and techno-functional stability of microencapsulated powders. Of the optional secondary wall materials, WPC improved L. acidophilus viability, up to 70 % during drying; SMP enhanced stability by up to 59 % and SC up to 6 %. Lactose and whey protein content enhanced thermoprotection; this is possibly due to their ability to depress the glass transition and melting temperatures and to release antioxidants. The resultant L. acidophilus powders were stored for 90 days at 4 °C, 25 °C and 35 °C and the loss of viability calculated. The highest survival rates were obtained at 4 °C, inactivation rates for storage were dependent on the carrier wall material and the SMP/d-glucose powders had the lowest inactivation rates (0.013 day−1) whilst the highest was observed for the control containing only MD (0.041 day−1) and the SC-based system (0.030 day−1). Further increase in storage temperature (25 °C and 35 °C) was accompanied by increase of the inactivation rates of L. acidophilus that followed Arrhenius kinetics. In general, SMP-based formulations exhibited the highest temperature dependency whilst WPC the lowest. d-Glucose addition improved the storage stability of the probiotic powders although it was accompanied by an increase of the residual moisture, water activity and hygroscopicity, and a reduction of the glass transition temperature in the tested systems

    Molecular, Pathological, Radiological, and Immune Profiling of Non-brainstem Pediatric High-Grade Glioma from the HERBY Phase II Randomized Trial

    Get PDF
    The HERBY trial was a phase II open-label, randomized, multicenter trial evaluating bevacizumab (BEV) in addition to temozolomide/radiotherapy in patients with newly diagnosed non-brainstem high-grade glioma (HGG) between the ages of 3 and 18 years. We carried out comprehensive molecular analysis integrated with pathology, radiology, and immune profiling. In post-hoc subgroup analysis, hypermutator tumors (mismatch repair deficiency and somatic POLE/POLD1 mutations) and those biologically resembling pleomorphic xanthoastrocytoma ([PXA]-like, driven by BRAF_V600E or NF1 mutation) had significantly more CD8+ tumor-infiltrating lymphocytes, and longer survival with the addition of BEV. Histone H3 subgroups (hemispheric G34R/V and midline K27M) had a worse outcome and were immune cold. Future clinical trials will need to take into account the diversity represented by the term “HGG” in the pediatric population
    corecore