106 research outputs found

    Left gaze bias in humans, rhesus monkeys and domestic dogs

    Get PDF
    While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance

    Characterization of the behavior of carotenoids from pitanga (Eugenia uniflora) and buriti (Mauritia flexuosa) during microemulsion production and in a dynamic gastrointestinal system

    Get PDF
    Uncommon tropical fruits are emerging as raw-material for new food products with health benefits. This work aimed at formulating and processing microemulsions from pitanga (Eugenia uniflora) and buriti (Mauritia flexuosa) fruits, since they are very rich in carotenoids (particularly lycopene and -carotene), in order to encapsulate and increase carotenoids bioaccessibility. Pitanga and buriti microemulsions were produced by applying a direct processing (high-speed homogenization at 15,000 rpm and ultrasound with 20 kHz probe at 40% amplitude) of the whole pulp together with surfactant (Tween 80 or Whey Protein Isolate at 2%) and corn oil (5%). All treatments (HSHUS for 04, 40, 44, 48 minmin) applied were able to increase the amount of carotenoid released. However, the processing also decreased the total amount of carotenoids in the whole pulp of studied fruits. The impact of processing during microemulsion production was not severe. The overall data suggest that the presence of surfactant and oil during processing may protect the carotenoids in fruits and microemulsions. Final recovery of total carotenoids, after passing the samples through a dynamic gastrointestinal system that simulates the human digestion, was higher for microemulsions than for whole pulps. High losses of total carotenoids in buriti and -carotene and lycopene in pitanga occurred during jejunum and ileum phases. The present work confirms that it is possible to increase -carotene and lycopene bioaccessibility from fruits by directly processing microemulsions (p<0.01).This work was supported by the São Paulo Research Foundation—FAPESP through research funding [Grant #2015/15507-9] and Ph.D. scholarship for Paulo Berni [Grant #2014/15119-6] and a Research Internships Abroad (BEPE) support [Grant #2016/13355-0]. The author Ana C. Pinheiro is recipient of a fellowship from the Portuguese Foundation for Science and Technology (FCT) [Grant SFRH/BPD/101181/2014]info:eu-repo/semantics/publishedVersio

    Physical losses could partially explain modest carotenoid retention in dried food products from biofortified cassava

    Get PDF
    Gari, a fermented and dried semolina made from cassava, is one of the most common foods in West Africa. Recently introduced biofortified yellow cassava containing provitamin A carotenoids could help tackle vitamin A deficiency prevalent in those areas. However there are concerns because of the low retention of carotenoids during gari processing compared to other processes (e.g. boiling). The aim of the study was to assess the levels of true retention in trans–β-carotene during gari processing and investigate the causes of low retention. Influence of processing step, processor (3 commercial processors) and variety (TMS 01/ 1371; 01/1368 and 01/1412) were assessed. It was shown that low true retention (46% on average) during gari processing may be explained by not only chemical losses (i.e. due to roasting temperature) but also by physical losses (i.e. due to leaching of carotenoids in discarded liquids): true retention in the liquid lost from grating negatively correlated with true retention retained in the mash (R = -0.914). Moreover, true retention followed the same pattern as lost water at the different processing steps (i.e. for the commercial processors). Variety had a significant influence on true retention, carotenoid content, and trans-cis isomerisation but the processor type had little effect. It is the first time that the importance of physical carotenoid losses was demonstrated during processing of biofortified crops

    Supportive care in patients with advanced non-small-cell lung cancer

    Get PDF

    Supportive care in patients with advanced non-small-cell lung cancer.

    Get PDF

    Sirtuin-mediated DNA damage response by modulation of glutamate dehydrogenase activity in Arabidopsis thaliana

    No full text
    Sirtuins, ClassIII NAD-dependent deacetylases, play a central role in many metabolic pathways related to cell survival and are evolutionary conserved from bacteria to mammals. Among the seven human sirtuins, SIRT4 and SIRT6 share homology domains with the two sirtuins present in Arabidopsis thaliana plants, AtSRT2 and AtSRT1 respectively. With the aim to evaluate sirtuin functions in phylogenetically distant organisms, we report data on a corresponding role between Arabidopsis SRT2 and human SIRT4 genes. We find that AtSRT2 is involved in a defence process already known to be regulated by SIRT4. In fact the DNA Damage Response (DDR) in human cells induces SIRT4 that in turn limits proliferation via repression of glutamine metabolism (Jeong et al, Cancer Cell 2013, 23:450). In Arabidopsis seedlings, the induction of DNA damage promotes transcriptional activation of SRT2 gene and decreased activity of glutamate dehydrogenase (GDH), one of the enzymes that catalyze a-ketoglurate (aKG) production from glutamine. As aKG is a major anaplerotic component of TCA cycle in proliferating cells, the decreased GDH activity is coherent with the slowed cell proliferation that we observed. Moreover, in plants knock out for SRT2, GDH activity and cell proliferation are less affected by DNA damage, confirming the role of AtSRT2 in this metabolic pathway

    Growth Inhibition and Heavy Metal Accumulation in CHO Cells

    No full text

    Saponins from soy and chickpea: Stability during beadmaking and in vitro bioaccessibility

    No full text
    This study investigated the stability of saponins during the making and simulated digestion of soy and soy-chickpea breads and the bioaccessibility of saponins in digested breads. Recovery of saponins in soy bread exceeded that in soy-chickpea breads, and recovery of type A and B saponins was greater than for type E and DDMP saponins. Simulated digestion of breads resulted in greater relative losses of type A and DDMP saponins than type B and E saponins due in part to conversion of DDMP. Bioaccessibility of type B, E, and DDMP saponins in aqueous fraction of chyme exceeded 50%, but was ∼30% for type A saponins. Caco-2 cells accumulated 0.8-2.8% of saponins from apical compartment containing diluted aqueous fraction of chyme. These findings suggest that saponin structure and food matrix affect the stability of saponins during processing and digestion and that uptake of saponins by enterocyte-like cells is poor despite moderate apparent bioaccessibility
    corecore