23 research outputs found

    Nano-topography Enhances Communication in Neural Cells Networks

    Get PDF
    Abstract Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness S a affects networks topology. In the low nano-meter range, S a  = 0–30 nm, information increases with S a . Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration

    Scalable, ultra-resistant structural colors based on network metamaterials

    Get PDF
    Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications

    Nature Inspired Plasmonic Structures: Influence of Structural Characteristics on Sensing Capability

    No full text
    Surface enhanced Raman scattering (SERS) is a powerful analytical technique that allows the enhancement of a Raman signal in a molecule or molecular assemblies placed in the proximity of nanostructured metallic surfaces, due to plasmonic effects. However, laboratory methods to obtain of these prototypes are time-consuming, expensive and they do not always lead to the desired result. In this work, we analyse structures existing in nature that show, on a nanoscale, characteristic conformations of photonic crystals. We demonstrate that these structures, if covered with gold, change into plasmonic nanostructures and are able to sustain the SERS effect. We study three different structures with this property: opal, a hydrated amorphous form of silica (SiO2 center dot nH(2)O); diatoms, a kind of unicellular alga; and peacock tail feather. Rhodamine 6G (down to 10(-12) M) is used to evaluate their capability to increase the Raman signal. These results allow us to define an alternative way to obtain a high sensitivity in Raman spectroscopy, currently achieved by a long and expensive technique, and to fabricate inexpensive nanoplasmonic structures which could be integrated into optical sensors

    Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

    No full text
    Background: Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Methods: Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Results: Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm-1, which is enriched in human induced pluripotent stem cells. Conclusions: Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts

    Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes

    No full text
    Tip-enhanced Raman spectroscopy provides chemical information while raster scanning samples with topographical detail. The coupling of atomic force microscopy and Raman spectroscopy in top illumination optical setup is a powerful configuration to resolve nanometer structures while collecting reflection mode backscattered signal. Here, we theoretically calculate the field enhancement generated by TER spectroscopy with top illumination geometry and we apply the technique to the characterization of insulin amyloid fibrils. We experimentally confirm that this technique is able to enhance the Raman signal of the polypeptide chain by a factor of 105, thus revealing details down to few molecules resolutio
    corecore