90 research outputs found

    Persistent Tn polyagglutination syndrome during febrile neutropenia: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Tn polyagglutination syndrome is a rare disorder that has been reported on only a few occasions in the literature, and, to the best of our knowledge, never before in the context of febrile neutropenia.</p> <p>Case presentation</p> <p>We report the case of a 26-year-old Caucasian woman who presented to our emergency department complaining of a persistent fever over the previous three days. She had a history of long-standing refractory pancytopenia with multi-lineage dysplasia and severe neutropenia, but she had rarely experienced infection. The results of a physical examination and multiple laboratory tests were unremarkable. While investigating the possible causes of the refractory, long-standing pancytopenia, the possibility of a polyagglutinable state was suggested. Blood samples were sent to the laboratory for an analysis of mixed-field seed lectin agglutination assay. A serum lectin panel confirmed the final diagnosis of Tn-activation.</p> <p>Conclusions</p> <p>We should include Tn-activation in our differential whenever we encounter cases of refractory long-standing idiopathic cytopenias and inconclusive bone marrow results displaying multi-lineage dysplasia. Novel genetic techniques have recently revealed the interesting pathophysiology of this phenomenon. The recognition and inclusion of Tn polyagglutination syndrome in our differential diagnoses has important clinical implications, given its main associated features, such as severe thrombocytopenia and neutropenia, which are usually linked to a benign clinical course and prognosis. Increased awareness of the polyagglutinable disorders will potentially decrease the need for invasive and costly medical interventions and also raises the need for monitoring of this specific sub-set of patients. In addition, the study of the expression and implications of Tn, and other similar antigens, offers a fascinating perspective for the study of its role in the diagnosis, prognosis and immunotherapy of solid tumors and hematological malignancies. The infrequency with which Tn polyagglutination syndrome is encountered, its clinical features and its pathophysiology make it a formidable diagnostic challenge.</p

    Opposite role of Bax and BCL-2 in the anti-tumoral responses of the immune system

    Get PDF
    BACKGROUND: The relative role of anti apoptotic (i.e. Bcl-2) or pro-apoptotic (e.g. Bax) proteins in tumor progression is still not completely understood. METHODS: The rat glioma cell line A15A5 was stably transfected with human Bcl-2 and Bax transgenes and the viability of theses cell lines was analyzed in vitro and in vivo. RESULTS: In vitro, the transfected cell lines (huBax A15A5 and huBcl-2 A15A5) exhibited different sensitivities toward apoptotic stimuli. huBax A15A5 cells were more sensitive and huBcl-2 A15A5 cells more resistant to apoptosis than mock-transfected A15A5 cells (pCMV A15A5). However, in vivo, in syngenic rat BDIX, these cell lines behaved differently, as no tumor growth was observed with huBax A15A5 cells while huBcl-2 A15A5 cells formed large tumors. The immune system appeared to be involved in the rejection of huBax A15A5 cells since i) huBax A15A5 cells were tumorogenic in nude mice, ii) an accumulation of CD8+ T-lymphocytes was observed at the site of injection of huBax A15A5 cells and iii) BDIX rats, which had received huBax A15A5 cells developed an immune protection against pCMV A15A5 and huBcl-2 A15A5 cells. CONCLUSIONS: We show that the expression of Bax and Bcl-2 controls the sensitivity of the cancer cells toward the immune system. This sensitization is most likely to be due to an increase in immune induced cell death and/or the amplification of an anti tumour immune respons

    Bax Function in the Absence of Mitochondria in the Primitive Protozoan Giardia lamblia

    Get PDF
    Bax-induced permeabilization of the mitochondrial outer membrane and release of cytochrome c are key events in apoptosis. Although Bax can compromise mitochondria in primitive unicellular organisms that lack a classical apoptotic machinery, it is still unclear if Bax alone is sufficient for this, or whether additional mitochondrial components are required. The protozoan parasite Giardia lamblia is one of the earliest branching eukaryotes and harbors highly degenerated mitochondrial remnant organelles (mitosomes) that lack a genome. Here we tested whether human Bax expressed in Giardia can be used to ablate mitosomes. We demonstrate that these organelles are neither targeted, nor compromised, by Bax. However, specialized compartments of the regulated secretory pathway are completely ablated by Bax. As a consequence, maturing cyst wall proteins that are sorted into these organelles are released into the cytoplasm, causing a developmental arrest and cell death. Interestingly, this ectopic cargo release is dependent on the carboxy-terminal 22 amino acids of Bax, and can be prevented by the Bax-inhibiting peptide Ku70. A C-terminally truncated Bax variant still localizes to secretory organelles, but is unable to permeabilize these membranes, uncoupling membrane targeting and cargo release. Even though mitosomes are too diverged to be recognized by Bax, off-target membrane permeabilization appears to be conserved and leads to cell death completely independently of mitochondria

    µ-Calpain Conversion of Antiapoptotic Bfl-1 (BCL2A1) into a Prodeath Factor Reveals Two Distinct alpha-Helices Inducing Mitochondria-Mediated Apoptosis

    Get PDF
    Anti-apoptotic Bfl-1 and pro-apoptotic Bax, two members of the Bcl-2 family sharing a similar structural fold, are classically viewed as antagonist regulators of apoptosis. However, both proteins were reported to be death inducers following cleavage by the cysteine protease µ-calpain. Here we demonstrate that calpain-mediated cleavage of full-length Bfl-1 induces the release of C-terminal membrane active α-helices that are responsible for its conversion into a pro-apoptotic factor. A careful comparison of the different membrane-active regions present in the Bfl-1 truncated fragments with homologous domains of Bax show that helix α5, but not α6, of Bfl-1 induces cell death and cytochrome c release from purified mitochondria through a Bax/Bak-dependent mechanism. In contrast, both helices α5 and α6 of Bax permeabilize mitochondria regardless of the presence of Bax or Bak. Moreover, we provide evidence that the α9 helix of Bfl-1 promotes cytochrome c release and apoptosis through a unique membrane-destabilizing action whereas Bax-α9 does not display such activities. Hence, despite a common 3D-structure, C-terminal toxic domains present on Bfl-1 and Bax function in a dissimilar manner to permeabilize mitochondria and induce apoptosis. These findings provide insights for designing therapeutic approaches that could exploit the cleavage of endogenous Bcl-2 family proteins or the use of Bfl-1/Bax-derived peptides to promote tumor cell clearance

    Pharmacogenetic profiling and cetuximab outcome in patients with advanced colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We analyzed the influence of 8 germinal polymorphisms of candidate genes potentially related to EGFR signalling (<it>EGFR</it>, <it>EGF</it>, <it>CCND1</it>) or antibody-directed cell cytotoxicity (<it>FCGR2A </it>and <it>FCGR3A</it>) on outcome of colorectal cancer (CRC) patients receiving cetuximab-based therapy.</p> <p>Methods</p> <p>Fifty-eight advanced CRC patients treated with cetuximab-irinotecan salvage therapy between 2001 and 2007 were analyzed (mean age 60; 50 PS 0-1). The following polymorphisms were analyzed on blood DNA: <it>EGFR </it>(CA repeats in intron 1, -216 G > T, -191C > A, R497K), <it>EGF </it>(A61G), <it>CCND1 </it>(A870G), <it>FCGR2A </it>(R131H), <it>FCGR3A </it>(F158V). Statistical analyses were conducted on the total population and on patients with wt KRas tumors. All SNPs were considered as ternary variables (wt/wt <it>vs </it>wt/mut <it>vs </it>mut/mut), with the exception of -191C > A <it>EGFR </it>polymorphism (AA patient merged with CA patients).</p> <p>Results</p> <p>Analysis of skin toxicity as a function of EGFR intron 1 polymorphism showed a tendency for higher toxicity in patients with a low number of CA-repeats (p = 0.058). <it>CCND1 </it>A870G polymorphism was significantly related to clinical response, both in the entire population and in KRas wt patients, with the G allele being associated with a lack of response. In wt KRas patients, time to progression (TTP) was significantly related to <it>EGFR </it>-191C > A polymorphism with a longer TTP in CC patients as compared to others, and to <it>CCND1 </it>A870G polymorphism with the G allele being associated with a shorter TTP; a multivariate analysis including these two polymorphisms only retained <it>CCND1 </it>polymorphism. Overall survival was significantly related to <it>CCND1 </it>polymorphism with a shorter survival in patients bearing the G allele, and to <it>FCGR3A </it>F158V polymorphism with a shorter survival in VV patients (in the entire population and in KRas wt patients). <it>FCGR3A </it>F158V and <it>CCND1 </it>A870G polymorphisms were significant independent predictors of overall survival.</p> <p>Conclusions</p> <p>Present original data obtained in wt KRas patients corresponding to the current cetuximab-treated population clearly suggest that <it>CCND1 </it>A870G polymorphism may be used as an additional marker for predicting cetuximab efficacy, TTP and overall survival. In addition, <it>FCGR3A </it>F158V polymorphism was a significant independent predictor of overall survival.</p
    corecore