77 research outputs found

    Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells

    Get PDF
    INTRODUCTION: Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. Breast cancers can have an inherent or acquired resistance to docetaxel but the causes of this resistance remain unclear. However, apoptosis and cell cycle regulation are key mechanisms by which most chemotherapeutic agents exert their cytotoxic effects. METHODS: We created two docetaxel-resistant human breast cancer cell lines (MCF-7 and MDA-MB-231) and performed cDNA microarray analysis to identify candidate genes associated with docetaxel resistance. Gene expression changes were validated at the RNA and protein levels by reverse transcription PCR and western analysis, respectively. RESULTS: Gene expression cDNA microarray analysis demonstrated reduced p27 expression in docetaxel-resistant breast cancer cells. Although p27 mRNA expression was found to be reduced only in MCF-7 docetaxel-resistant sublines (2.47-fold), reduced expression of p27 protein was noted in both MCF-7 and MDA-MB-231 docetaxel-resistant breast cancer cells (2.83-fold and 3.80-fold, respectively). CONCLUSIONS: This study demonstrates that reduced expression of p27 is associated with acquired resistance to docetaxel in breast cancer cells. An understanding of the genes that are involved in resistance to chemotherapy may allow further development in modulating drug resistance, and may permit selection of those patients who are most likely to benefit from such therapies

    Antibodies to Serine Proteases in the Antiphospholipid Syndrome

    Get PDF
    It is generally accepted that the major autoantigen for antiphospholipid antibodies (aPL) in the antiphospholipid syndrome (APS) is β2-glycoprotein I (β2GPI). However, a recent study has revealed that some aPL bind to certain conformational epitope(s) on β2GPI shared by the homologous enzymatic domains of several serine proteases involved in hemostasis and fibrinolysis. Importantly, some serine protease–reactive aPL correspondingly hinder anticoagulant regulation and resolution of clots. These results extend several early findings of aPL binding to other coagulation factors and provide a new perspective about some aPL in terms of binding specificities and related functional properties in promoting thrombosis. Moreover, a recent immunological and pathological study of a panel of human IgG monoclonal aPL showed that aPL with strong binding to thrombin promote in vivo venous thrombosis and leukocyte adherence, suggesting that aPL reactivity with thrombin may be a good predictor for pathogenic potentials of aPL

    Effects of supplemented isoenergetic diets varying in cereal fiber and protein content on the bile acid metabolic signature and relation to insulin resistance

    Get PDF
    Bile acids (BA) are potent metabolic regulators influenced by diet. We studied effects of isoenergetic increases in the dietary protein and cereal-fiber contents on circulating BA and insulin resistance (IR) in overweight and obese adults. Randomized controlled nutritional intervention (18 weeks) in 72 non-diabetic participants (overweight/obese: 29/43) with at least one further metabolic risk factor. Participants were group-matched and allocated to four isoenergetic supplemented diets: control; high cereal fiber (HCF); high-protein (HP); or moderately increased cereal fiber and protein (MIX). Whole-body IR and insulin-mediated suppression of hepatic endogenous glucose production were measured using euglycaemic–hyperinsulinemic clamps with [6-62H2] glucose infusion. Circulating BA, metabolic biomarkers, and IR were measured at 0, 6, and 18 weeks. Under isoenergetic conditions, HP-intake worsened IR in obese participants after 6 weeks (M-value: 3.77 ± 0.58 vs. 3.07 ± 0.44 mg/kg/min, p = 0.038), with partial improvement back to baseline levels after 18 weeks (3.25 ± 0.45 mg/kg/min, p = 0.089). No deleterious effects of HP-intake on IR were observed in overweight participants. HCF-diet improved IR in overweight participants after 6 weeks (M-value 4.25 ± 0.35 vs. 4.81 ± 0.31 mg/kg/min, p = 0.016), but did not influence IR in obese participants. Control and MIX diets did not influence IR. HP-induced, but not HCF-induced changes in IR strongly correlated with changes of BA profiles. MIX-diet significantly increased most BA at 18 weeks in obese, but not in overweight participants. BA remained unchanged in controls. Pooled BA concentrations correlated with fasting fibroblast growth factor-19 (FGF-19) plasma levels (r = 0.37; p = 0.003). Higher milk protein intake was the only significant dietary predictor for raised total and primary BA in regression analyses (total BA, p = 0.017; primary BA, p = 0.011). Combined increased intake of dietary protein and cereal fibers markedly increased serum BA concentrations in obese, but not in overweight participants. Possible mechanisms explaining this effect may include compensatory increases of the BA pool in the insulin resistant, obese state; or defective BA transport

    PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study

    Get PDF
    BACKGROUND: Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way offsets their substantial benefits. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely effects of PCSK9 inhibitors on diabetes risk. METHODS: In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores. FINDINGS: Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0·09 mmol/L, 95% CI 0·02 to 0·15), bodyweight (1·03 kg, 0·24 to 1·82), waist-to-hip ratio (0·006, 0·003 to 0·010), and an odds ratio for type diabetes of 1·29 (1·11 to 1·50). Based on the collected data, we did not identify associations with HbA1c (0·03%, -0·01 to 0·08), fasting insulin (0·00%, -0·06 to 0·07), and BMI (0·11 kg/m(2), -0·09 to 0·30). INTERPRETATION: PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefits of PCSK9 inhibitor treatment, as was previously done for statins. FUNDING: British Heart Foundation, and University College London Hospitals NHS Foundation Trust (UCLH) National Institute for Health Research (NIHR) Biomedical Research Centre.This work was supported by a British Heart Foundation Programme Grant (RG/10/12/28456). AFS is funded by University College London Hospitals NHS Foundation Trust (UCLH) National Institute for Health Research (NIHR) Biomedical Research Centre (BRC10200) and by a UCL springboard population science fellowship. FWA is supported by a Dekker scholarship-Junior Staff Member 2014T001–Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre. ADH is an NIHR Senior Investigator. Funding information and acknowledgments for studies contributing data are reported in the appendix

    Cytoskeletal protein kinases: titin and its relations in mechanosensing

    Get PDF
    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation

    Erythropoietin: a multimodal neuroprotective agent

    Get PDF
    The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent
    corecore