83 research outputs found
Amylase polymorphism in Drosophila melanogaster: haplotype frequencies in tropical African and American populations
International audienc
Amylase polymorphism in Drosophila melanogaster: haplotype frequencies in tropical African and American populations
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Antibodies to Serine Proteases in the Antiphospholipid Syndrome
It is generally accepted that the major autoantigen for antiphospholipid antibodies (aPL) in the antiphospholipid syndrome (APS) is β2-glycoprotein I (β2GPI). However, a recent study has revealed that some aPL bind to certain conformational epitope(s) on β2GPI shared by the homologous enzymatic domains of several serine proteases involved in hemostasis and fibrinolysis. Importantly, some serine protease–reactive aPL correspondingly hinder anticoagulant regulation and resolution of clots. These results extend several early findings of aPL binding to other coagulation factors and provide a new perspective about some aPL in terms of binding specificities and related functional properties in promoting thrombosis. Moreover, a recent immunological and pathological study of a panel of human IgG monoclonal aPL showed that aPL with strong binding to thrombin promote in vivo venous thrombosis and leukocyte adherence, suggesting that aPL reactivity with thrombin may be a good predictor for pathogenic potentials of aPL
Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells
INTRODUCTION: Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. Breast cancers can have an inherent or acquired resistance to docetaxel but the causes of this resistance remain unclear. However, apoptosis and cell cycle regulation are key mechanisms by which most chemotherapeutic agents exert their cytotoxic effects. METHODS: We created two docetaxel-resistant human breast cancer cell lines (MCF-7 and MDA-MB-231) and performed cDNA microarray analysis to identify candidate genes associated with docetaxel resistance. Gene expression changes were validated at the RNA and protein levels by reverse transcription PCR and western analysis, respectively. RESULTS: Gene expression cDNA microarray analysis demonstrated reduced p27 expression in docetaxel-resistant breast cancer cells. Although p27 mRNA expression was found to be reduced only in MCF-7 docetaxel-resistant sublines (2.47-fold), reduced expression of p27 protein was noted in both MCF-7 and MDA-MB-231 docetaxel-resistant breast cancer cells (2.83-fold and 3.80-fold, respectively). CONCLUSIONS: This study demonstrates that reduced expression of p27 is associated with acquired resistance to docetaxel in breast cancer cells. An understanding of the genes that are involved in resistance to chemotherapy may allow further development in modulating drug resistance, and may permit selection of those patients who are most likely to benefit from such therapies
Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells
Oestrogen inhibits resveratrol-induced post-translational modification of p53 and apoptosis in breast cancer cells
Effects of supplemented isoenergetic diets varying in cereal fiber and protein content on the bile acid metabolic signature and relation to insulin resistance
Bile acids (BA) are potent metabolic regulators influenced by diet. We studied effects of isoenergetic increases in the dietary protein and cereal-fiber contents on circulating BA and insulin resistance (IR) in overweight and obese adults. Randomized controlled nutritional intervention (18 weeks) in 72 non-diabetic participants (overweight/obese: 29/43) with at least one further metabolic risk factor. Participants were group-matched and allocated to four isoenergetic supplemented diets: control; high cereal fiber (HCF); high-protein (HP); or moderately increased cereal fiber and protein (MIX). Whole-body IR and insulin-mediated suppression of hepatic endogenous glucose production were measured using euglycaemic–hyperinsulinemic clamps with [6-62H2] glucose infusion. Circulating BA, metabolic biomarkers, and IR were measured at 0, 6, and 18 weeks. Under isoenergetic conditions, HP-intake worsened IR in obese participants after 6 weeks (M-value: 3.77 ± 0.58 vs. 3.07 ± 0.44 mg/kg/min, p = 0.038), with partial improvement back to baseline levels after 18 weeks (3.25 ± 0.45 mg/kg/min, p = 0.089). No deleterious effects of HP-intake on IR were observed in overweight participants. HCF-diet improved IR in overweight participants after 6 weeks (M-value 4.25 ± 0.35 vs. 4.81 ± 0.31 mg/kg/min, p = 0.016), but did not influence IR in obese participants. Control and MIX diets did not influence IR. HP-induced, but not HCF-induced changes in IR strongly correlated with changes of BA profiles. MIX-diet significantly increased most BA at 18 weeks in obese, but not in overweight participants. BA remained unchanged in controls. Pooled BA concentrations correlated with fasting fibroblast growth factor-19 (FGF-19) plasma levels (r = 0.37; p = 0.003). Higher milk protein intake was the only significant dietary predictor for raised total and primary BA in regression analyses (total BA, p = 0.017; primary BA, p = 0.011). Combined increased intake of dietary protein and cereal fibers markedly increased serum BA concentrations in obese, but not in overweight participants. Possible mechanisms explaining this effect may include compensatory increases of the BA pool in the insulin resistant, obese state; or defective BA transport
Erythropoietin: a multimodal neuroprotective agent
The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent
Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9
BACKGROUND: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. METHODS: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. RESULTS: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable. CONCLUSIONS: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate
- …
