90 research outputs found

    Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals

    Full text link
    If all strongly interacting sparticles (the squarks and the gluinos) in an unconstrained minimal supersymmetric standard model (MSSM) are heavier than the corresponding mass lower limits in the minimal supergravity (mSUGRA) model, obtained by the current LHC experiments, then the existing data allow a variety of electroweak (EW) sectors with light sparticles yielding dark matter (DM) relic density allowed by the WMAP data. Some of the sparticles may lie just above the existing lower bounds from LEP and lead to many novel DM producing mechanisms not common in mSUGRA. This is illustrated by revisiting the above squark-gluino mass limits obtained by the ATLAS Collaboration, with an unconstrained EW sector with masses not correlated with the strong sector. Using their selection criteria and the corresponding cross section limits, we find at the generator level using Pythia, that the changes in the mass limits, if any, are by at most 10-12% in most scenarios. In some cases, however, the relaxation of the gluino mass limits are larger (20\approx 20%). If a subset of the strongly interacting sparticles in an unconstrained MSSM are within the reach of the LHC, then signals sensitive to the EW sector may be obtained. This is illustrated by simulating the bljblj\etslash, l=eandμl= e and \mu , and bτjb\tau j\etslash signals in i) the light stop scenario and ii) the light stop-gluino scenario with various light EW sectors allowed by the WMAP data. Some of the more general models may be realized with non-universal scalar and gaugino masses.Comment: 27 pages, 1 figure, references added, minor changes in text, to appear in JHE

    Wind-Powered Wheel Locomotion, Initiated by Leaping Somersaults, in Larvae of the Southeastern Beach Tiger Beetle (Cicindela dorsalis media)

    Get PDF
    Rapid movement is challenging for elongate, soft-bodied animals with short or no legs. Leaping is known for only a few animals with this “worm-like” morphology. Wheel locomotion, in which the animal's entire body rolls forward along a central axis, has been reported for only a handful of animals worldwide. Here we present the first documented case of wind-powered wheel locomotion, in larvae of the coastal tiger beetle Cicindela dorsalis media. When removed from their shallow burrows, larvae easily can be induced to enter a behavioral sequence that starts with leaping; while airborne, larvae loop their body into a rotating wheel and usually either “hit the ground rolling” or leap again. The direction larvae wheel is closely related to the direction in which winds are blowing; thus, all our larvae wheeled up-slope, as winds at our study site consistently blew from sea to land. Stronger winds increased both the proportion of larvae wheeling, and the distance traveled, exceeding 60 m in some cases. In addition, the proportion of larvae that wheel and the distance traveled by wheeling larvae are significantly greater on smooth sandy beaches than on beach surfaces made rough and irregular by pedestrian, equestrian, and vehicular traffic. Like other coastal species of tiger beetles, C. dorsalis media has suffered major declines in recent years that are clearly correlated with increased human impacts. The present study suggests that the negative effects of beach traffic may be indirect, preventing larvae from escaping from predators using wheel locomotion by disrupting the flat, hard surface necessary for efficient wheeling

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Meta-analysis of prophylactic corticosteroid use in post-ERCP pancreatitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute pancreatitis is a common complication of endoscopic retrograde cholangiopancreatography and benefit of pharmacological treatment is unclear. Although prophylactic use of corticosteroid for reduction of pancreatic injury after ERCP has been evaluated, discrepancy about beneficial effect of corticosteroid on pancreatic injury still exists. The aim of current study is to evaluate effectiveness and safety of corticosteroid in prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP).</p> <p>Methods</p> <p>We employed the method recommended by the Cochrane Collaboration to perform a meta-analysis of seven randomized controlled trials (RCTs) of corticosteroid in prevention of post-ERCP pancreatitis (PEP) around the world.</p> <p>Results</p> <p>Most of the seven RCTs were of high quality. When the RCTs were analyzed, odds ratios (OR) for corticosteroid were 1.13 [95% CI (0.89~1.44), p = 0.32] for PEP, 1.61 [95% CI (0.74~3.52), p = 0.23] for severe PEP, 0.92 [95% CI (0.57~1.48), p = 0.73] for post-ERCP hyperamylasemia respectively. The results indicated that there were no beneficial effects of corticosteroid on acute pancreatitis and hyperamylasemia. No evidence of publication bias was found.</p> <p>Conclusion</p> <p>Corticosteroids cannot prevent pancreatic injury after ERCP. Therefore, their use in the prophylaxis of PEP is not recommended.</p

    Mycobacterium tuberculosis Lipolytic Enzymes as Potential Biomarkers for the Diagnosis of Active Tuberculosis

    Get PDF
    BACKGROUND: New diagnosis tests are urgently needed to address the global tuberculosis (TB) burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452) as new markers in the serodiagnosis of active TB. METHODS: Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals. RESULTS: A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses. CONCLUSION: These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent biomarkers providing high sensitivity and specificity levels for the immunodiagnosis of active TB
    corecore