6 research outputs found

    Rural to Urban Migration and Changes in Cardiovascular risk Factors in Tanzania: A Prospective Cohort Study.

    Get PDF
    High levels of rural to urban migration are a feature of most African countries. Our aim was to investigate changes, and their determinants, in cardiovascular risk factors on rural to urban migration in Tanzania. Men and women (15 to 59 years) intending to migrate from Morogoro rural region to Dar es Salaam for at least 6 months were identified. Measurements were made at least one week but no more than one month prior to migration, and 1 to 3 monthly after migration. Outcome measures included body mass index, blood pressure, fasting lipids, and self reported physical activity and diet. One hundred and three men, 106 women, mean age 29 years, were recruited and 132 (63.2%) followed to 12 months. All the figures presented here refer to the difference between baseline and 12 months in these 132 individuals. Vigorous physical activity declined (79.4% to 26.5% in men, 37.8% to 15.6% in women, p < 0.001), and weight increased (2.30 kg men, 2.35 kg women, p < 0.001). Intake of red meat increased, but so did the intake of fresh fruit and vegetables. HDL cholesterol increased in men and women (0.24, 0.25 mmoll-1 respectively, p < 0.001); and in men, not women, total cholesterol increased (0.42 mmoll-1, p = 0.01), and triglycerides fell (0.31 mmoll-1, p = 0.034). Blood pressure appeared to fall in both men and women. For example, in men systolic blood pressure fell by 5.4 mmHg, p = 0.007, and in women by 8.6 mmHg, p = 0.001. The lower level of physical activity and increasing weight will increase the risk of diabetes and cardiovascular disease. However, changes in diet were mixed, and may have contributed to mixed changes in lipid profiles and a lack of rise in blood pressure. A better understanding of the changes occurring on rural to urban migration is needed to guide preventive measures

    Expression of a Novel Antimicrobial Peptide Penaeidin4-1 in Creeping Bentgrass (Agrostis stolonifera L.) Enhances Plant Fungal Disease Resistance

    Get PDF
    BACKGROUND: Turfgrass species are agriculturally and economically important perennial crops. Turfgrass species are highly susceptible to a wide range of fungal pathogens. Dollar spot and brown patch, two important diseases caused by fungal pathogens Sclerotinia homoecarpa and Rhizoctonia solani, respectively, are among the most severe turfgrass diseases. Currently, turf fungal disease control mainly relies on fungicide treatments, which raises many concerns for human health and the environment. Antimicrobial peptides found in various organisms play an important role in innate immune response. METHODOLOGY/PRINCIPAL FINDINGS: The antimicrobial peptide - Penaeidin4-1 (Pen4-1) from the shrimp, Litopenaeus setiferus has been reported to possess in vitro antifungal and antibacterial activities against various economically important fungal and bacterial pathogens. In this study, we have studied the feasibility of using this novel peptide for engineering enhanced disease resistance into creeping bentgrass plants (Agrostis stolonifera L., cv. Penn A-4). Two DNA constructs were prepared containing either the coding sequence of a single peptide, Pen4-1 or the DNA sequence coding for the transit signal peptide of the secreted tobacco AP24 protein translationally fused to the Pen4-1 coding sequence. A maize ubiquitin promoter was used in both constructs to drive gene expression. Transgenic turfgrass plants containing different DNA constructs were generated by Agrobacterium-mediated transformation and analyzed for transgene insertion and expression. In replicated in vitro and in vivo experiments under controlled environments, transgenic plants exhibited significantly enhanced resistance to dollar spot and brown patch, the two major fungal diseases in turfgrass. The targeting of Pen4-1 to endoplasmic reticulum by the transit peptide of AP24 protein did not significantly impact disease resistance in transgenic plants. CONCLUSION/SIGNIFICANCE: Our results demonstrate the effectiveness of Pen4-1 in a perennial species against fungal pathogens and suggest a potential strategy for engineering broad-spectrum fungal disease resistance in crop species
    corecore