13 research outputs found

    Non-compartment model to compartment model pharmacokinetics transformation meta-analysis – a multivariate nonlinear mixed model

    Get PDF
    Background To fulfill the model based drug development, the very first step is usually a model establishment from published literatures. Pharmacokinetics model is the central piece of model based drug development. This paper proposed an important approach to transform published non-compartment model pharmacokinetics (PK) parameters into compartment model PK parameters. This meta-analysis was performed with a multivariate nonlinear mixed model. A conditional first-order linearization approach was developed for statistical estimation and inference. Results Using MDZ as an example, we showed that this approach successfully transformed 6 non-compartment model PK parameters from 10 publications into 5 compartment model PK parameters. In simulation studies, we showed that this multivariate nonlinear mixed model had little relative bias (<1%) in estimating compartment model PK parameters if all non-compartment PK parameters were reported in every study. If there missing non-compartment PK parameters existed in some published literatures, the relative bias of compartment model PK parameter was still small (<3%). The 95% coverage probabilities of these PK parameter estimates were above 85%. Conclusions This non-compartment model PK parameter transformation into compartment model meta-analysis approach possesses valid statistical inference. It can be routinely used for model based drug development

    Optimization in computational systems biology

    Get PDF
    Optimization aims to make a system or design as effective or functional as possible. Mathematical optimization methods are widely used in engineering, economics and science. This commentary is focused on applications of mathematical optimization in computational systems biology. Examples are given where optimization methods are used for topics ranging from model building and optimal experimental design to metabolic engineering and synthetic biology. Finally, several perspectives for future research are outlined

    Use of pejibaye flour (Bactris gasipaes Kunth) in the production of food pastas

    No full text
    Pejibaye flour (Bactris gasipaes Kunth, also known as peach palm) produced in Nova California and Extrema in Rondonia, Brazil, was tested for farinographic characteristics. It was also studied for its possible use in producing food pastas, using a mixture containing 15% pejibaye flour (PF) and 85% wheat flour (WF). In terms of the farinogram characteristics of the mixed flour, when compared with WF, there was an increase in values for water absorption, arrival and development times, as well as the tolerance index; on the other hand, there was a decrease in stability and departure times. In the cooking test for spaghetti and twist noodles, it was found that adding PF to the pasta did not significantly alter its characteristics of quality and texture.41893393

    Reproduction

    No full text

    Assessment of sesame (Sesamum indicum L.) cake as a source of high-added value substances: from waste to health

    No full text
    The risk of exhaustion of natural resources and raw materials have given rise to emerging trends such as recycling of food waste. From the economical and ecological points of view, conversion of biowaste to high added value compounds has been getting great attention among the science and commercial entities. Due to their high-added value phytochemicals, agricultural and food residues have been a great significant to the researchers around the world. This study focuses on the valorisation of cake derived from sesame oil processing. If the very valuable non-nutrient phytochemicals in sesame cake are not evaluated properly, they would be consumed as just animal feed or fertilizers. They might be employed as antiaging (in pharmaceutical products), or free radical scavenger (in dietary supplements), or preservative additive against lipid oxidation (in fat containing food products). This review article aims to present pharmacological and therapeutic effects of sesame cake extract by pointing out its application in pharmaceutical, cosmetic and food industries

    Recent Advances in Thermoplastic Starch Biodegradable Nanocomposites

    No full text
    The use of polymers capable of being degraded by the action of microorganisms and/or enzymes without causing harmful effects is a strategy in the management of waste and environmental care. Agro-polymers have begun to play a significant role among researchers and industry, since it has been found that these materials are Biodegradable and eco-friendly. Starch is a polymer belonging to the group of polysaccharides, which is produced by almost all plants using it as energy storage. Depending on the botanical origin of the plant, starch granules can have different shapes (spheres, platelets, polygonal) and size (from 0.5 to 175 μm). Its chemical composition consists of two components: amylose, composed of 1,4-α-D bonds of glucose in straight chains, and amylopectin, in which the glucose chains are highly branched. Starch is a naturally renewable carbohydrate polymer, abundant, and inexpensive, so it is mostly used as raw material in the production of Biodegradable polymers. However, since its thermal degradation and melting are overlapping processes, the structure of native starch must be physically modified by disrupting the crystalline structure of the granule, either by mechanical stress, pressure, or temperature, in the presence of aplasticizer. This process is called ?gelatinization? and the resulting product is known as ?Thermoplastic starch (TPS)?. This name is deduced by its processability characteristics similar to those of conventional thermoplastic polymers. The amount of plasticizer and its chemical nature exert a strong influence on the physical properties of starch in two aspects: (i) controlling its destructuring and depolymerization minimizing degradation during Processing; (ii) affectingthe final properties of the TPS, such as the glass transition temperature and mechanical properties. Starch has poor mechanical and barrier properties and is susceptible to changes in properties as a function of ambient humidity. The mechanical properties of Thermoplastic starch change as a function of time after gelatinization due to molecular reorganization, which depends on theProcessing method and storage conditions. When samples are stored below the Tg, they can suffer physical aging with densification of material. When T>Tg, samples develop retrogradation, increasing their crystallinity. Physical aging is observed for materials with plasticizer content less than 25% by weight. This phenomenon induces an increase in the strength of the material and a decrease in the deformation at break. Same strategies can be evaluated to reduce the disadvantages described above. Starch can be chemically modified producing the reaction of native starch with chemical reagents that introduce new functional groups, depending on the properties to be improved. Also, the incorporation of nanoclays to the polymer blends produces enhancements in the mechanical and barrier properties, driving to materials with high performance/cost ratio.The aim of this chapter is to evidence the advantages and disadvantages of the use of Thermoplastic starch as a replacement for conventional polymers, the strategies to improve its performance and also the use of nanoclays as fillers to improve the final properties of the material.Fil: Guarás, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Ludueña, Leandro Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin
    corecore