1,423 research outputs found

    Video-assisted mediastinoscopic transhiatal esophagectomy combined with laparoscopy for esophageal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Minimally invasive transhiatal esophagectomy for esophageal cancer includes mediastinoscopic and laparoscopic transhiatal esophagectomy. It is inadequate in both two techniques. It is impossible to dissect the lower esophagus with single mediastinoscopy or the upper and middle esophagus with single laparoscopy. We use mediastinoscopy combined with laparoscopy to dissect the whole esophagus and stomach including lymph node dissection. In addition, laparoscopic gastric mobilization leads to less trauma than an open gastroplasty.</p> <p>Methods</p> <p>40 cases of video-assisted mediastinoscopic transhiatal esophagectomy were performed and divided into two groups.32 patients were received surgical therapy of single mediastinoscopic esophagectomy with open gastroplasty in group A, while 8 patients were received surgical therapy of mediastinoscopic esophagectomy combined with laparoscopic lower esophageal and gastric dissection in group B. The perioperative complications were recorded.</p> <p>Results</p> <p>Video-assisted mediastinoscopic transhiatal esophagectomy was performed successfully both in group A and B. It suggested that mediastinoscopy combined with laparoscopy be better than single mediastinoscopy because of less blood loss, less pain, shorter ICU stay and complete lower mediastinal lymph nodes resection.</p> <p>Conclusions</p> <p>Video-assisted mediastinoscopic transhiatal esophagectomy combined with laparoscopy is a safe and minimally invasive technique with whole esophagus and mediastinal lymph node dissection in the clear visualization of the mediastinum, reducing the abdominal trauma.</p

    Site-specific incorporation of phosphotyrosine using an expanded genetic code.

    Get PDF
    Access to phosphoproteins with stoichiometric and site-specific phosphorylation status is key to understanding the role of protein phosphorylation. Here we report an efficient method to generate pure, active phosphotyrosine-containing proteins by genetically encoding a stable phosphotyrosine analog that is convertible to native phosphotyrosine. We demonstrate its general compatibility with proteins of various sizes, phosphotyrosine sites and functions, and reveal a possible role of tyrosine phosphorylation in negative regulation of ubiquitination

    Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline

    Get PDF
    Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality

    Intervention to enhance skilled arm and hand movements after stroke: A feasibility study using a new virtual reality system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rehabilitation programs designed to develop skill in upper extremity (UE) function after stroke require progressive practice that engage and challenge the learner. Virtual realty (VR) provides a unique environment where the presentation of stimuli can be controlled systematically for optimal challenge by adapting task difficulty as performance improves. We describe four VR tasks that were developed and tested to improve arm and hand movement skills for individuals with hemiparesis.</p> <p>Methods</p> <p>Two participants with chronic post-stroke paresis and different levels of motor severity attended 12 training sessions lasting 1 to 2 hours each over a 3-week period. Behavior measures and questionnaires were administered pre-, mid-, and post-training.</p> <p>Results</p> <p>Both participants improved VR task performance across sessions. The less impaired participant averaged more time on task, practiced a greater number of blocks per session, and progressed at a faster rate over sessions than the more impaired participant. Impairment level did not change but both participants improved functional ability after training. The less impaired participant increased the number of blocks moved on the Box & Blocks test while the more impaired participant achieved 4 more items on the Functional Test of the Hemiparetic UE.</p> <p>Conclusion</p> <p>Two participants with differing motor severity were able to engage in VR based practice and improve performance over 12 training sessions. We were able to successfully provide individualized, progressive practice based on each participant's level of movement ability and rate of performance improvement.</p

    Regulation of Neuronal Cell Death by c-Abl-Hippo/MST2 Signaling Pathway

    Get PDF
    BACKGROUND: Mammalian Ste20-like kinases (MSTs) are the mammalian homologue of Drosophila hippo and play critical roles in regulation of cell death, organ size control, proliferation and tumorigenesis. MSTs exert pro-apoptotic function through cleavage, autophosphorylation and in turn phosphorylation of downstream targets, such as Histone H2B and FOXO (Forkhead box O). Previously we reported that protein kinase c-Abl mediates oxidative stress-induced neuronal cell death through phosphorylating MST1 at Y433, which is not conserved among mammalian MST2, Drosophila Hippo and C.elegans cst-1/2. METHODOLOGY/PRINCIPAL FINDINGS: Using immunoblotting, in vitro kinase and cell death assay, we demonstrate that c-Abl kinase phosphorylates MST2 at an evolutionarily conserved site, Y81, within the kinase domain. We further show that the phosphorylation of MST2 by c-Abl leads to the disruption of the interaction with Raf-1 proteins and the enhancement of homodimerization of MST2 proteins. It thereby enhances the MST2 activation and induces neuronal cell death. CONCLUSIONS/SIGNIFICANCE: The identification of the c-Abl tyrosine kinase as a novel upstream activator of MST2 suggests that the conserved c-Abl-MST signaling cascade plays an important role in oxidative stress-induced neuronal cell death

    Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide

    Get PDF
    Nanoscale devices in which the interaction with light can be configured using external control signals hold great interest for next-generation optoelectronic circuits. Materials exhibiting a structural or electronic phase transition offer a large modulation contrast with multi-level optical switching and memory functionalities. In addition, plasmonic nanoantennas can provide an efficient enhancement mechanism for both the optically induced excitation and the readout of materials strategically positioned in their local environment. Here, we demonstrate picosecond all-optical switching of the local phase transition in plasmonic antenna-vanadium dioxide (VO2) hybrids, exploiting strong resonant field enhancement and selective optical pumping in plasmonic hotspots. Polarization- and wavelength-dependent pump-probe spectroscopy of multifrequency crossed antenna arrays shows that nanoscale optical switching in plasmonic hotspots does not affect neighboring antennas placed within 100 nm of the excited antennas. The antenna-assisted pumping mechanism is confirmed by numerical model calculations of the resonant, antenna-mediated local heating on a picosecond time scale. The hybrid, nanoscale excitation mechanism results in 20 times reduced switching energies and 5 times faster recovery times than a VO2 film without antennas, enabling fully reversible switching at over two million cycles per second and at local switching energies in the picojoule range. The hybrid solution of antennas and VO2 provides a conceptual framework to merge the field localization and phase-transition response, enabling precise, nanoscale optical memory functionalities

    The PI3K/Akt pathway upregulates Id1 and integrin α4 to enhance recruitment of human ovarian cancer endothelial progenitor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial progenitor cells (EPCs) contribute to tumor angiogenesis and growth. We aimed to determine whether inhibitors of differentiation 1 (Id1) were expressed in circulating EPCs of patients with ovarian cancer, whether Id1 could mediate EPCs mobilization and recruitment, and, if so, what underlying signaling pathway it used.</p> <p>Methods</p> <p>Circulating EPCs cultures were from 25 patients with ovarian cancer and 20 healthy control subjects. Id1 and integrin α4 expression were analyzed by real-time reverse transcription-polymerase chain reaction and western blot. EPCs proliferation, migration, and adhesion were detected by MTT, transwell chamber, and EPCs-matrigel adhesion assays. Double-stranded DNA containing the interference sequences were synthesized according to the structure of a pGCSIL-GFP viral vector and then inserted into a linearized vector. Positive clones were identified as lentiviral vectors that expressed human Id1 short hairpin RNA (shRNA).</p> <p>Results</p> <p>Id1 and integrin α4 expression were increased in EPCs freshly isolated from ovarian cancer patients compared to those obtained from healthy subjects. siRNA-mediated Id1 downregulation substantially reduced EPCs function and integrin α4 expression. Importantly, Inhibition of PI3K/Akt inhibited Id1 and integrin α4 expression, resulting in the decreasing biological function of EPCs.</p> <p>Conclusions</p> <p>Id1 induced EPCs mobilization and recruitment is mediated chiefly by the PI3K/Akt signaling pathway and is associated with activation of integrin α4.</p

    Analysis and comparative genomics of R997, the first SXT/R391 integrative and conjugative element (ICE) of the Indian Sub-Continent

    Get PDF
    peer-reviewedThe aim of this study was to analyse R997, the first integrative and conjugative element (ICE) isolated from the Indian Sub-Continent, and to determine its relationship to the SXT/R391 family of ICEs. WGS of Escherichia coli isolate AB1157 (which contains R997) was performed using Illumina sequencing technology. R997 context was assessed by de novo assembly, gene prediction and annotation tools, and compared to other SXT/R391 ICEs. R997 has a size of 85 Kb and harbours 85 ORFs. Within one of the variable regions a HMS-1 β-lactamase resistance gene is located. The Hotspot regions of the element contains restriction digestion systems and insertion sequences. R997 is very closely related to the SXT-like elements from widely dispersed geographic areas. The sequencing of R997 increases the knowledge of the earliest isolated SXT/R391 elements and may provide insight on the emergence of these elements on the Indian sub-continent.PUBLISHEDpeer-reviewe
    corecore