12 research outputs found

    Changes of 5-hydroxymethylcytosine distribution during myeloid and lymphoid differentiation of CD34+ cells

    No full text
    Background Hematopoietic stem cell renewal and differentiation are regulated through epigenetic processes. The conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC) by ten-eleven-translocation enzymes provides new insights into the epigenetic regulation of gene expression during development. Here, we studied the potential gene regulatory role of 5hmC during human hematopoiesis. Results We used reduced representation of 5-hydroxymethylcytosine profiling (RRHP) to characterize 5hmC distribution in CD34+ cells, CD4+ T cells, CD19+ B cells, CD14+ monocytes and granulocytes. In all analyzed blood cell types, the presence of 5hmC at gene bodies correlates positively with gene expression, and highest 5hmC levels are found around transcription start sites of highly expressed genes. In CD34+ cells, 5hmC primes for the expression of genes regulating myeloid and lymphoid lineage commitment. Throughout blood cell differentiation, intragenic 5hmC is maintained at genes that are highly expressed and required for acquisition of the mature blood cell phenotype. Moreover, in CD34+ cells, the presence of 5hmC at enhancers associates with increased binding of RUNX1 and FLI1, transcription factors essential for hematopoiesis. Conclusions Our study provides a comprehensive genome-wide overview of 5hmC distribution in human hematopoietic cells and new insights into the epigenetic regulation of gene expression during human hematopoiesis.</p

    Correlation between single nucleotide polymorphisms in CYP4F2 and warfarin dosing in chinese valve replacement patients

    No full text
    <p>Abstract</p> <p>Background</p> <p>Individuals with implanted mechanical valve prostheses require lifelong anticoagulation therapy with warfarin. The narrow therapeutic index of warfarin makes it difficult to dose and maintain proper anticoagulation. A number of single nucleotide polymorphisms (SNPs) affecting vitamin K or warfarin metabolism have been shown to affect warfarin dosing. Our aim was to study the effect of the CYP4F2 rs2108622-1347 (C > T) variant on warfarin dosing in Chinese patients.</p> <p>Methods</p> <p>We studied 352 patients after heart valve replacement surgery. Warfarin dosing for patients was adjusted to achieve 1.8 ≤ INR ≤ 2.5. We determined the presence of SNPs in CYP4F2 in these patients and investigated their association with warfarin dosing.</p> <p>Results</p> <p>We found the frequency of the CYP4F2 rs2108622 C allele was 79.5% and T-allele frequency was 20.5%. The warfarin dose requirement for CC individuals was significantly lower than that for CT or TT individuals (<it>P</it> < 0.05). TT-homozygous individuals required a 0.56 mg/day higher dose of warfarin than their CC counterparts.</p> <p>Conclusions</p> <p>This study demonstrates that CYP4F2 rs2108622 significantly affects the warfarin dose requirement to achieve adequate anticoagulant activity in Chinese individuals. Genotyping of this SNP may allow clinicians to determine the initiation dose for patients following valve-replacement surgery in China.</p

    Effect of CYP4F2, VKORC1, and CYP2C9 in Influencing Coumarin Dose: A Single-Patient Data Meta-Analysis in More Than 15,000 Individuals

    Get PDF
    The CYP4F2 gene is known to influence mean coumarin dose. The aim of the present study was to undertake a meta-analysis at individual patients' level to capture the possible effect of ethnicity, gene-gene interaction or other drugs on the association and to verify if inclusion of CYP4F2*3 variant into dosing algorithms improves the prediction of mean coumarin dose. We asked the authors of our previous meta-analysis (30 articles) and of 38 new articles retrieved by a systematic review to send us individual patients' data. The final collection consists 15,754 patients split into a derivation and validation cohort. The CYP4F2*3 polymorphism was consistently associated with an increase in mean coumarin dose (+9% (95%CI 7-10%), with a higher effect in females, in patients taking acenocoumarol and in Whites. The inclusion of the CYP4F2*3 in dosing algorithms slightly improved the prediction of stable coumarin dose. New pharmacogenetic equations potentially useful for clinical practice were derived. This article is protected by copyright. All rights reserved

    Pseudoxanthoma elasticum

    No full text
    corecore