22 research outputs found

    Self-sharpening induces jet-like structure in seafloor gravity currents

    Get PDF
    Gravity currents are the primary means by which sediments, solutes and heat are transported across the ocean-floor. Existing theory of gravity current flow employs a statistically-stable model of turbulent diffusion that has been extant since the 1960s. Here we present the first set of detailed spatial data from a gravity current over a rough seafloor that demonstrate that this existing paradigm is not universal. Specifically, in contrast to predictions from turbulent diffusion theory, self-sharpened velocity and concentration profiles and a stable barrier to mixing are observed. Our new observations are explained by statistically-unstable mixing and self-sharpening, by boundary-induced internal gravity waves; as predicted by recent advances in fluid dynamics. Self-sharpening helps explain phenomena such as ultra-long runout of gravity currents and restricted growth of bedforms, and highlights increased geohazard risk to marine infrastructure. These processes likely have broader application, for example to wave-turbulence interaction, and mixing processes in environmental flows

    Entrepreneurship, export orientation and economic growth

    Get PDF
    In this paper the relationship between a country’s prevalence of new ventures and its rate of economic growth is investigated, while taking into account new ventures’ export orientation. It is generally acknowledged that new venture creation as well as export activity may both be important strategies for achieving national economic growth. However, to our knowledge no attempt has been made to investigate empirically the role of export-driven new ventures in economic growth. We focus on the national level and use data for a sample of 34 countries over the period 2002–2008. Our results suggest that, on top of a positive relation between entrepreneurial activity in general and subsequent macroeconomic growth, there is an additional positive effect of export-oriented early-stage entrepreneurship in higher-income countries. However, there is no such additional effect in lower-income countries

    Shear Wave Splitting and Mantle Anisotropy: Measurements, Interpretations, and New Directions

    Full text link

    Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua

    No full text
    Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge1, 2, 3 or eroded fore-arc complexes4 but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (63–190 mm yr-1) and are comparable to the magnitude of subducting Cocos plate motion (approx85 mm yr-1). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones

    Fault-induced seismic anisotropy by hydration in subducting oceanic plates

    No full text
    International audienceThe variation of elastic- wave velocities as a function of the direction of propagation through the Earth's interior is a widely documented phenomenon called seismic anisotropy. The geometry and amount of seismic anisotropy is generally estimated by measuring shearwave splitting, which consists of determining the polarization direction of the fast shear- wave component and the time delay between the fast and slow, orthogonally polarized, waves. In subduction zones, the teleseismic fast shear- wave component is oriented generally parallel to the strike of the trench(1), although a few exceptions have been reported (Cascadia(2) and restricted areas of South America(3,4)). The interpretation of shear- wave splitting above subduction zones has been controversial and none of the inferred models seems to be sufficiently complete to explain the entire range of anisotropic patterns registered worldwide(1). Here we show that the amount and the geometry of seismic anisotropies measured in the forearc regions of subduction zones strongly depend on the preferred orientation of hydrated faults in the subducting oceanic plate. The anisotropy originates from the crystallographic preferred orientation of highly anisotropic hydrous minerals (serpentine and talc) formed along steeply dipping faults and from the larger- scale vertical layering consisting of dry and hydrated crust - mantle sections whose spacing is several times smaller than teleseismic wavelengths. Fault orientations and estimated delay times are consistent with the observed shear- wave splitting patterns in most subduction zones
    corecore