18 research outputs found
Astrocytes convert network excitation to tonic inhibition of neurons
<p>Abstract</p> <p>Background</p> <p>Glutamate and γ-aminobutyric acid (GABA) transporters play important roles in balancing excitatory and inhibitory signals in the brain. Increasing evidence suggest that they may act concertedly to regulate extracellular levels of the neurotransmitters.</p> <p>Results</p> <p>Here we present evidence that glutamate uptake-induced release of GABA from astrocytes has a direct impact on the excitability of pyramidal neurons in the hippocampus. We demonstrate that GABA, synthesized from the polyamine putrescine, is released from astrocytes by the reverse action of glial GABA transporter (GAT) subtypes GAT-2 or GAT-3. GABA release can be prevented by blocking glutamate uptake with the non-transportable inhibitor DHK, confirming that it is the glutamate transporter activity that triggers the reversal of GABA transporters, conceivably by elevating the intracellular Na<sup>+ </sup>concentration in astrocytes. The released GABA significantly contributes to the tonic inhibition of neurons in a network activity-dependent manner. Blockade of the Glu/GABA exchange mechanism increases the duration of seizure-like events in the low-[Mg<sup>2+</sup>] <it>in vitro </it>model of epilepsy. Under <it>in vivo </it>conditions the increased GABA release modulates the power of gamma range oscillation in the CA1 region, suggesting that the Glu/GABA exchange mechanism is also functioning in the intact hippocampus under physiological conditions.</p> <p>Conclusions</p> <p>The results suggest the existence of a novel molecular mechanism by which astrocytes transform glutamat<it>ergic </it>excitation into GABA<it>ergic </it>inhibition providing an adjustable, <it>in situ </it>negative feedback on the excitability of neurons.</p
Puma genomes from North and South America provide insights into the genomic consequences of inbreeding (vol 10, 4769, 2019)
The original version of this Article contained several errors. In Figure 3a, both axes were incorrectly labelled as PC2 . The correct x axis label is PC1 . The present affiliation of Warren E Johnson with the Walter Reed Biosystematics Unit, Smithsonian Institution, was inadvertently omitted. The following statement was also omitted from the Acknowledgements: “Portions of this manuscript were prepared while W.E.J held a National Research Council Research Associateship Award at the Walter Reed Army Institute of Research and the published material reflects the views of the authors and should not be construed to represent those of the Department of the Army or the Department of Defense.” The initials “W.J” in the Author Contributions statement should have been listed as “W.E.J”. These errors have now been corrected in both the PDF and HTML versions of the Article
Pharmacological strategies to reduce exacerbation risk in COPD: a narrative review
Identifying patients at risk of exacerbations and managing them appropriately to reduce this risk represents an important clinical challenge. Numerous treatments have been assessed for the prevention of exacerbations and their efficacy may differ by patient phenotype. Given their centrality in the treatment of COPD, there is strong rationale for maximizing bronchodilation as an initial strategy to reduce exacerbation risk irrespective of patient phenotype. Therefore, in patients assessed as frequent exacerbators (>1 exacerbation/year) we propose initial bronchodilator treatment with a long-acting muscarinic antagonist (LAMA)/ long-acting β2-agonist (LABA). For those patients who continue to experience >1 exacerbation/year despite maximal bronchodilation, we advocate treating according to patient phenotype. Based on currently available data on adding inhaled corticosteroids (ICS) to a LABA, ICS might be added to a LABA/LAMA combination in exacerbating patients who have an asthma-COPD overlap syndrome or high blood eosinophil counts, while in exacerbators with chronic bronchitis, consideration should be given to treating with a phosphodiesterase (PDE)-4 inhibitor (roflumilast) or high-dose mucolytic agents. For those patients who experience frequent bacterial exacerbations and/or bronchiectasis, addition of mucolytic agents or a macrolide antibiotic (e.g. azithromycin) should be considered. In all patients at risk of exacerbations, pulmonary rehabilitation should be included as part of a comprehensive management plan.</p