272 research outputs found

    Prevalence of cardiovascular health risk behaviors in a remote rural community of Sindhuli district, Nepal

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) is emerging as a public health menace among low and middle income countries. It has particularly affected the poorest. However, there is paucity of information about CVD risk factors profile among Nepalese rural communities where the majority of people live in poverty. Therefore, this study aimed to identify the prevalence of cardiovascular health risk behaviors in an outback community of Nepal. METHODS: We conducted a descriptive cross-sectional study in Tinkanya Village Development Committee (VDC), Sindhuli between January and March, 2014. Total 406 participants of age 20 to 50 years were selected randomly. Data were collected using WHO-NCD STEPwise approach questionnaires and analyzed with SPSS V.16.0 and R i386 2.15.3 software. RESULT: The mean age of participants was 36.2 ± 9 years. Majority of participants (76.3%) were from lower socio-economic class, Adibasi/Janajati (63.1%), and without formal schooling (46.3%). Smoking was present in 28.6%, alcohol consumption in 47.8%, insufficient fruits and vegetables intake in 96.6%, insufficient physical activity in 48.8%; 25.6% had high waist circumference, 37.4% had overweight and obesity. Average daily salt intake per capita was 14.4 grams ±4.89 grams. Hypertension was detected in 12.3%. It had an inverse relationship with education and socio-economic status. In binary logistic regression analysis, age, smoking, body mass index (BMI) and daily salt intake were identified as significant predictors of hypertension. CONCLUSION: Present study showed high prevalence of smoking, alcohol consumption, insufficient fruit and vegetable intake, daily salt intake, overweight and obesity and hypertension among remote rural population suggesting higher risk for developing CVD in future. Nepalese rural communities, therefore, are in need of population-wide comprehensive intervention approaches for reducing CVD health risk behaviors

    Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer

    Get PDF
    Overexpression of fibroblast growth factors (FGFs) has been implicated in prostate carcinogenesis. FGFs function via their high-affinity interactions with receptor tyrosine kinases, FGFR1–4. Expression of FGFR1 and FGFR2 in prostate cancer (CaP) was not found to be associated with clinical parameters. In this report, we further investigated for abnormal FGFR expression in prostate cancer and explore their significance as a potential target for therapy. The expression levels of FGFR3 and FGFR4 in CaP were examined and corroborated to clinical parameters. FGFR3 immunoreactivity in benign prostatic hyperplasia (BPH) and CaP (n=26 and 57, respectively) had similar intensity and pattern. Overall, FGFR4 expression was significantly upregulated in CaP when compared to BPH. A significant positive correlation between FGFR4 expression and Gleason score was noted: Gleason score 7–10 tumours compared to BPH (P<0.0001, Fisher's exact test), Gleason score 4–6 tumours compared to BPH (P<0.0004), and Gleason 7–10 compared to Gleason 4–6 tumours (P<0.005). FGFR4 overexpression was associated with an unfavourable outcome with decreased disease-specific survival (P<0.04, log rank test). FGF-induced signalling is targeted using soluble FGF receptor (sFGFR), potent inhibitor of FGFR function. We have previously shown that sFGFR expression via a replication-deficient adenoviral vector (AdlllcRl) suppresses in vitro FGF-induced signalling and function in human CaP DU145 cells. We tested the significance of inhibiting FGF function along with conventional therapeutic modalities in CaP, and confirmed synergistic effects on in vitro cell growth (proliferation and colony formation) by combining sFGFR expression and treatment with either Paclitaxel (Taxol®) or γ-irradiation. In summary, our data support the model of FGF system as valid target for therapy in CaP

    Exosomes Derived from M. Bovis BCG Infected Macrophages Activate Antigen-Specific CD4+ and CD8+ T Cells In Vitro and In Vivo

    Get PDF
    Activation of both CD4+ and CD8+ T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in naïve macrophages. In the present study we demonstrate that exosomes stimulate both CD4+ and CD8+ splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4+ and CD8+ T cells. The isolated T cells also produced IFN-γ upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate

    Retrograde trafficking of β-dystroglycan from the plasma membrane to the nucleus

    Get PDF
    β-Dystroglycan (β-DG) is a transmembrane protein with critical roles in cell adhesion, cytoskeleton remodeling and nuclear architecture. This functional diversity is attributed to the ability of β-DG to target to, and conform specific protein assemblies at the plasma membrane (PM) and nuclear envelope (NE). Although a classical NLS and importin α/β mediated nuclear import pathway has already been described for β-DG, the intracellular trafficking route by which β-DG reaches the nucleus is unknown. In this study, we demonstrated that β-DG undergoes retrograde intracellular trafficking from the PM to the nucleus via the endosome-ER network. Furthermore, we provided evidence indicating that the translocon complex Sec61 mediates the release of β-DG from the ER membrane, making it accessible for importins and nuclear import. Finally, we show that phosphorylation of β-DG at Tyr890 is a key stimulus for β-DG nuclear translocation. Collectively our data describe the retrograde intracellular trafficking route that β-DG follows from PM to the nucleus. This dual role for a cell adhesion receptor permits the cell to functionally connect the PM with the nucleus and represents to our knowledge the first example of a cell adhesion receptor exhibiting retrograde nuclear trafficking and having dual roles in PM and NE

    Mechanistic model of natural killer cell proliferative response to IL-15 receptor stimulation

    Get PDF
    Natural killer (NK) cells are innate lymphocytes that provide early host defense against intracellular pathogens, such as viruses. Although NK cell development, homeostasis, and proliferation are regulated by IL-15, the influence of IL-15 receptor (IL-15R)-mediated signaling at the cellular level has not been quantitatively characterized. We developed a mathematical model to analyze the kinetic interactions that control the formation and localization of IL-15/IL-15R complexes. Our computational results demonstrated that IL-15/IL-15R complexes on the cell surface were a key determinant of the magnitude of the IL-15 proliferative signal and that IL-15R occupancy functioned as an effective surrogate measure of receptor signaling. Ligand binding and receptor internalization modulated IL-15R occupancy. Our work supports the hypothesis that the total number and duration of IL-15/IL-15R complexes on the cell surface crosses a quantitative threshold prior to the initiation of NK cell division. Furthermore, our model predicted that the upregulation of IL-15Rα on NK cells substantially increased IL-15R complex formation and accelerated the expansion of dividing NK cells with the greatest impact at low IL-15 concentrations. Model predictions of the threshold requirement for NK cell recruitment to the cell cycle and the subsequent exponential proliferation correlated well with experimental data. In summary, our modeling analysis provides quantitative insight into the regulation of NK cell proliferation at the receptor level and provides a framework for the development of IL-15 based immunotherapies to modulate NK cell proliferation

    RNA viruses in community-acquired childhood pneumonia in semi-urban Nepal; a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pneumonia is among the main causes of illness and death in children <5 years of age. There is a need to better describe the epidemiology of viral community-acquired pneumonia (CAP) in developing countries.</p> <p>Methods</p> <p>From July 2004 to June 2007, we examined nasopharyngeal aspirates (NPA) from 2,230 cases of pneumonia (World Health Organization criteria) in children 2 to 35 months old recruited in a randomized trial of zinc supplementation at a field clinic in Bhaktapur, Nepal. The specimens were examined for respiratory syncytial virus (RSV), influenza virus type A (InfA) and B (InfB), parainfluenza virus types 1, 2 and 3 (PIV1, PIV2, and PIV3), and human metapneumovirus (hMPV) using a multiplex reverse transcriptase polymerase chain reaction (PCR) assay.</p> <p>Results</p> <p>We identified 919 virus isolates in 887 (40.0%) of the 2,219 NPA specimens with a valid PCR result, of which 334 (15.1%) yielded RSV, 164 (7.4%) InfA, 129 (5.8%) PIV3, 98 (4.4%) PIV1, 93 (4.2%) hMPV, 84 (3.8%) InfB, and 17 (0.8%) PIV2. CAP occurred in an epidemic pattern with substantial temporal variation during the three years of study. The largest peaks of pneumonia occurrence coincided with peaks of RSV infection, which occurred in epidemics during the rainy season and in winter. The monthly number of RSV infections was positively correlated with relative humidity (<it>r</it><sub><it>s </it></sub>= 0.40, <it>P </it>= 0.01), but not with temperature or rainfall. An hMPV epidemic occurred during one of the three winter seasons and the monthly number of hMPV cases was also associated with relative humidity (<it>r</it><sub><it>s </it></sub>= 0.55, <it>P </it>= 0.0005).</p> <p>Conclusion</p> <p>Respiratory RNA viruses were detected from NPA in 40% of CAP cases in our study. The most commonly isolated viruses were RSV, InfA, and PIV3. RSV infections contributed substantially to the observed CAP epidemics. The occurrence of viral CAP in this community seemed to reflect more or less overlapping micro-epidemics with several respiratory viruses, highlighting the challenges of developing and implementing effective public health control measures.</p

    A people-centred perspective on climate change, environmental stress, and livelihood resilience in Bangladesh

    Get PDF
    The Ganges–Brahmaputra delta enables Bangladesh to sustain a dense population, but it also exposes people to natural hazards. This article presents findings from the Gibika project, which researches livelihood resilience in seven study sites across Bangladesh. This study aims to understand how people in the study sites build resilience against environmental stresses, such as cyclones, floods, riverbank erosion, and drought, and in what ways their strategies sometimes fail. The article applies a new methodology for studying people’s decision making in risk-prone environments: the personal Livelihood History interviews (N = 28). The findings show how environmental stress, shocks, and disturbances affect people’s livelihood resilience and why adaptation measures can be unsuccessful. Floods, riverbank erosion, and droughts cause damage to agricultural lands, crops, houses, and properties. People manage to adapt by modifying their agricultural practices, switching to alternative livelihoods, or using migration as an adaptive strategy. In the coastal study sites, cyclones are a severe hazard. The study reveals that when a cyclone approaches, people sometimes choose not to evacuate: they put their lives at risk to protect their livelihoods and properties. Future policy and adaptation planning must use lessons learned from people currently facing environmental stress and shocks

    Generation of a Novel Regulatory NK Cell Subset from Peripheral Blood CD34+ Progenitors Promoted by Membrane-Bound IL-15

    Get PDF
    BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP), of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg). The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC) into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+) PB-HP. Finally, a small subset of NKp46(+) HLA-G(+) IL-10(+) is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+) CD16(+) NKp30(+) NKp44(+) NKp46(+) CD94(+) CD69(+) CCR7(+)) generated from specific pSTAT6(+) GATA3(+) precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant rejection or graft versus host diseases. In addition, NK-ireg cells can be easily derived from peripheral blood of the patients and could constitute an autologous biotherapic tool to be used combined or in alternative to other immuno-regulatory cells
    • …
    corecore