45 research outputs found

    Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4α

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocyte nuclear factor 4α (HNF4α), a liver-specific transcription factor, plays a significant role in liver-specific functions. However, its functions are poorly understood in the regulation of the inflammatory response. In order to obtain a genomic view of HNF4α in this context, microarray analysis was used to probe the expression profile of an inflammatory response induced by cytokine stimulation in a model of HNF4α knock-down in HepG2 cells.</p> <p>Results</p> <p>The expression of over five thousand genes in HepG2 cells is significantly changed with the dramatic reduction of HNF4α concentration compared to the cells with native levels of HNF4α. Over two thirds (71%) of genes that exhibit differential expression in response to cytokine treatment also reveal differential expression in response to HNF4α knock-down. In addition, we found that a number of HNF4α target genes may be indirectly mediated by an ETS-domain transcription factor ELK1, a nuclear target of mitogen-activated protein kinase (MAPK).</p> <p>Conclusion</p> <p>The results indicate that HNF4α has an extensive impact on the regulation of a large number of the liver-specific genes. HNF4α may play a role in regulating the cytokine-induced inflammatory response. This study presents a novel function for HNF4α, acting not only as a global player in many cellular processes, but also as one of the components of inflammatory response in the liver.</p

    Promoter DNA Methylation of Oncostatin M receptor-β as a Novel Diagnostic and Therapeutic Marker in Colon Cancer

    Get PDF
    In addition to genetic changes, the occurrence of epigenetic alterations is associated with accumulation of both genetic and epigenetic events that promote the development and progression of human cancer. Previously, we reported a set of candidate genes that comprise part of the emerging “cancer methylome”. In the present study, we first tested 23 candidate genes for promoter methylation in a small number of primary colon tumor tissues and controls. Based on these results, we then examined the methylation frequency of Oncostatin M receptor-β (OSMR) in a larger number of tissue and stool DNA samples collected from colon cancer patients and controls. We found that OSMR was frequently methylated in primary colon cancer tissues (80%, 80/100), but not in normal tissues (4%, 4/100). Methylation of OSMR was also detected in stool DNA from colorectal cancer patients (38%, 26/69) (cut-off in TaqMan-MSP, 4). Detection of other methylated markers in stool DNA improved sensitivity with little effect on specificity. Promoter methylation mediated silencing of OSMR in cell lines, and CRC cells with low OSMR expression were resistant to growth inhibition by Oncostatin M. Our data provide a biologic rationale for silencing of OSMR in colon cancer progression and highlight a new therapeutic target in this disease. Moreover, detection and quantification of OSMR promoter methylation in fecal DNA is a highly specific diagnostic biomarker for CRC

    Roles of the C-terminal domains of topoisomerase II alpha and topoisomerase II beta in regulation of the decatenation checkpoint

    No full text
    Topoisomerase (topo) IIα and IIβ maintain genome stability and are targets for anti-tumor drugs. In this study, we demonstrate that the decatenation checkpoint is regulated, not only by topo IIα, as previously reported, but also by topo IIβ. The decatenation checkpoint is most efficient when both isoforms are present. Regulation of this checkpoint and sensitivity to topo II-targeted drugs is influenced by the C-terminal domain (CTD) of the topo II isoforms and by a conserved non-catalytic tyrosine, Y640 in topo IIα and Y656 in topo IIβ. Deletion of most of the CTD of topo IIα, while preserving the nuclear localization signal (NLS), enhances the decatenation checkpoint and sensitivity to topo II-targeted drugs. In contrast, deletion of most of the CTD of topo IIβ, while preserving the NLS, and mutation of Y640 in topo IIα and Y656 in topo IIβ inhibits these activities. Structural studies suggest that the differential impact of the CTD on topo IIα and topo IIβ function may be due to differences in CTD charge distribution and differential alignment of the CTD with reference to transport DNA. Together these results suggest that topo IIα and topo IIβ cooperate to maintain genome stability, which may be distinctly modulated by their CTDs

    Overexpressed nuclear factor-κB can participate in endogenous C-reactive protein induction, and enhances the effects of C/EBPβ and signal transducer and activator of transcription-3

    No full text
    C-reactive protein (CRP), the prototypical human acute phase protein, is produced primarily by hepatocytes. Its expression is modestly induced by interleukin (IL)-6 in Hep3B cells while IL-1, which alone has no effect, synergistically enhances the effects of IL-6. In previous studies of the proximal CRP promoter, we found that signal transducer and activator of transcription-3 (STAT3) and C/EBPβ -mediated IL-6-induced transcription and that Rel p50 acted synergistically with C/EBPβ, in the absence of p65, to enhance CRP transcription. Neither a requirement nor a binding site for the classic nuclear factor (NF)-κB heterodimer p50/p65 were found. The current studies were undertaken to determine whether similar novel transcription factor interactions might regulate the endogenous CRP gene. Transiently overexpressed p50 or p65 induced CRP mRNA accumulation in Hep3B cells. The heterodimer p50/p65 was markedly more effective than p50 or p65 homodimers. Co-overexpression of p50 or p65 with C/EBPβ or STAT3 synergistically enhanced CRP expression. Maximal expression was observed with overexpression of all four transcription factors; comparable effects were observed with IL-1β treatment of cells overexpressing STAT3 + C/EBPβ. Data from the Human Genome Project revealed 13 potential κB sites in the first 4000 bases of the CRP promoter, only one of which, centred at −2652, bound nuclear p50/p65 heterodimer activated by IL-1β. Our findings indicate that classical NF-κB activation can participate in endogenous CRP induction, and that activated NF-κB may synergistically enhance the effects of C/EBPβ and STAT3. They raise the possibility, not as yet established, that NF-κB activation may be responsible for the synergistic effect of IL-1β on IL-6-induced CRP expression
    corecore