482 research outputs found

    Visuo-tactile integration in autism: atypical temporal binding may underlie greater reliance on proprioceptive information

    Get PDF
    BackgroundEvidence indicates that social functioning deficits and sensory sensitivities in autism spectrum disorder (ASD) are related to atypical sensory integration. The exact mechanisms underlying these integration difficulties are unknown; however, two leading accounts are (1) an over-reliance on proprioception and (2) atypical visuo-tactile temporal binding. We directly tested these theories by selectively manipulating proprioceptive alignment and visuo-tactile synchrony to assess the extent that these impact upon body ownership.MethodsChildren with ASD and typically developing controls placed their hand into a multisensory illusion apparatus, which presented two, identical live video images of their own hand in the same plane as their actual hand. One virtual hand was aligned proprioceptively with the actual hand (the veridical hand), and the other was displaced to the left or right. While a brushstroke was applied to the participants’ actual (hidden) hand, they observed the two virtual images of their hand also being stroked and were asked to identify their real hand. During brushing, one of three different temporal delays was applied to either the displaced hand or the veridical hand. Thus, only one virtual hand had synchronous visuo-tactile inputs.ResultsResults showed that visuo-tactile synchrony overrides incongruent proprioceptive inputs in typically developing children but not in autistic children. Evidence for both temporally extended visuo-tactile binding and a greater reliance on proprioception are discussed.ConclusionsThis is the first study to provide definitive evidence for temporally extended visuo-tactile binding in ASD. This may result in reduced processing of amodal inputs (i.e. temporal synchrony) over modal-specific information (i.e. proprioception). This would likely lead to failures in appropriately binding information from related events, which would impact upon sensitivity to sensory stimuli, body representation and social processes such as empathy and imitation

    Nursing students motivation toward their studies – a survey study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study focuses on Swedish nursing students' motivation toward their studies during their three year academic studies. Earlier studies show the importance of motivation for study commitment and result. The aim was to analyze nursing students' estimation of their degree of motivation during different semester during their education and to identify reasons for the degree of motivation.</p> <p>Methods</p> <p>A questionnaire asking for scoring motivation and what influenced the degree of motivation was distributed to students enrolled in a nursing programme. 315 students who studied at different semesters participated. Analyzes were made by statistical calculation and content analysis.</p> <p>Results</p> <p>The mean motivation score over all semesters was 6.3 (ranked between 0–10) and differed significantly during the semesters with a tendency to lower score during the 5th semester. Students (73/315) with motivation score <4 reported explanations such as negative opinion about the organisation of the programme, attitude towards the studies, life situation and degree of difficulty/demand on studies. Students (234/315) with motivation score >6 reported positive opinions to becoming a nurse (125/234), organization of the programme and attitude to the studies. The mean score value for the motivation ranking differed significantly between male (5.8) and female (6.8) students.</p> <p>Conclusion</p> <p>Conclusions to be drawn are that nursing students mainly grade their motivation positive distributed different throughout their entire education. The main motivation factor was becoming a nurse. This study result highlights the need of understanding the students' situation and their need of tutorial support.</p

    Nutrition education: a questionnaire for assessment and teaching

    Get PDF
    It is generally recognized that there is a need for improved teaching of nutrition in medical schools and for increased education of the general population. A questionnaire, derived in part from a study of physician knowledge, was administered to first year medical students in order to assess their knowledge of various aspects of nutrition and metabolism, and as a teaching tool to transmit information about the subject. The performance of first year students was consistent with a generally educated population but there were surprising deficits in some fundamental areas of nutrition. Results of the questionnaire are informative about student knowledge, and immediate reinforcement from a questionnaire may provide a useful teaching tool. In addition, some of the subject matter can serve as a springboard for discussion of critical issues in nutrition such as obesity and markers for cardiovascular disease. A major barrier to improved teaching of nutrition is the lack of agreement on some of these critical issues and there are apparent inconsistencies in recommendations of government and health agencies. It seems reasonable that improved teaching should address the lack of knowledge of nutrition, rather than knowledge of official guidelines. Student awareness of factual information should be the primary goal

    Preliminary study of the antioxidant properties of flowers and roots of Pyrostegia venusta (Ker Gawl) Miers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Free radical stress leads to tissue injury and can eventually to arthritis, atherosclerosis, diabetes mellitus, neurodegenerative diseases and carcinogenesis. Several studies are ongoing worldwide to find natural antioxidants of plant origin. We assessed the <it>in-vitro </it>antioxidant activities and screened the phytochemical constituents of methanolic extracts of <it>Pyrostegia venusta </it>(Ker Gawl) <it>Miers</it>.</p> <p>Methods</p> <p>We evaluated the antioxidant potential and phytochemical constituents of <it>P. venusta </it>using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2, 2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) assays. Gas chromatography-mass spectroscopy (GC-MS) studies were also undertaken to assess the phytochemical composition of the flower extracts.</p> <p>Results</p> <p>Phytochemical analyses revealed the presence of terpenoids, alkaloids, tannins, steroids, and saponins. The reducing ability of both extracts was in the range (in μm Fe(II)/g) of 112.49-3046.98 compared with butylated hydroxytoluene (BHT; 63.56 ± 2.62), catechin (972.02 ± 0.72 μm) and quercetin 3208.27 ± 31.29. A significant inhibitory effect of extracts of flowers (IC<sub>50 </sub>= 0.018 ± 0.69 mg/ml) and roots (IC<sub>50 </sub>= 0.026 ± 0.94 mg/ml) on ABTS free radicals was detected. The antioxidant activity of the extracts of flowers (95%) and roots (94%) on DPPH radicals was comparable with that of ascorbic acid (98.9%) and BHT (97.6%). GC-MS study revealed the presence of myoinositol, hexadecanoic acid, linoleic acid, palmitic acid and oleic acid in the flower extracts.</p> <p>Conclusion</p> <p>These data suggest that <it>P. venusta </it>is a natural source of antioxidants. The extracts of flowers and roots of <it>P. venusta </it>contain significant amounts of phytochemicals with antioxidative properties and could serve as inhibitors or scavengers of free radicals. <it>P. venusta </it>could be exploited as a potential source for plant-based pharmaceutical products. These results could form a sound basis for further investigation in the potential discovery of new natural bioactive compounds.</p

    A Synthetic Uric Acid Analog Accelerates Cutaneous Wound Healing in Mice

    Get PDF
    Wound healing is a complex process involving intrinsic dermal and epidermal cells, and infiltrating macrophages and leukocytes. Excessive oxidative stress and associated inflammatory processes can impair wound healing, and antioxidants have been reported to improve wound healing in animal models and human subjects. Uric acid (UA) is an efficient free radical scavenger, but has a very low solubility and poor tissue penetrability. We recently developed novel UA analogs with increased solubility and excellent free radical-scavenging properties and demonstrated their ability to protect neural cells against oxidative damage. Here we show that the uric acid analog (6, 8 dithio-UA, but not equimolar concentrations of UA or 1, 7 dimethyl-UA) modified the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in ways consistent with enhancement of the wound healing functions of all three cell types. We further show that 6, 8 dithio-UA significantly accelerates the wound healing process when applied topically (once daily) to full-thickness wounds in mice. Levels of Cu/Zn superoxide dismutase were increased in wound tissue from mice treated with 6, 8 dithio-UA compared to vehicle-treated mice, suggesting that the UA analog enhances endogenous cellular antioxidant defenses. These results support an adverse role for oxidative stress in wound healing and tissue repair, and provide a rationale for the development of UA analogs in the treatment of wounds and for modulation of angiogenesis in other pathological conditions

    Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages

    Get PDF
    notes: PMCID: PMC4006850types: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov'tCandida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we aimed at elucidating the processes leading to inhibition of phagosome acidification and maturation. We show that phagosomes containing viable C. glabrata cells do not fuse with pre-labeled lysosomes and possess low phagosomal hydrolase activity. Inhibition of acidification occurs independent of macrophage type (human/murine), differentiation (M1-/M2-type) or activation status (vitamin D3 stimulation). We observed no differential activation of macrophage MAPK or NFκB signaling cascades downstream of pattern recognition receptors after internalization of viable compared to heat killed yeasts, but Syk activation decayed faster in macrophages containing viable yeasts. Thus, delivery of viable yeasts to non-matured phagosomes is likely not triggered by initial recognition events via MAPK or NFκB signaling, but Syk activation may be involved. Although V-ATPase is abundant in C. glabrata phagosomes, the influence of this proton pump on intracellular survival is low since blocking V-ATPase activity with bafilomycin A1 has no influence on fungal viability. Active pH modulation is one possible fungal strategy to change phagosome pH. In fact, C. glabrata is able to alkalinize its extracellular environment, when growing on amino acids as the sole carbon source in vitro. By screening a C. glabrata mutant library we identified genes important for environmental alkalinization that were further tested for their impact on phagosome pH. We found that the lack of fungal mannosyltransferases resulted in severely reduced alkalinization in vitro and in the delivery of C. glabrata to acidified phagosomes. Therefore, protein mannosylation may play a key role in alterations of phagosomal properties caused by C. glabrata.Deutsche ForschungsgemeinschaftNational Institutes for HealthWellcome TrustBBSR

    Tandemly repeated DNA families in the mouse genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional and morphological studies of tandem DNA repeats, that combine high portion of most genomes, are mostly limited due to the incomplete characterization of these genome elements. We report here a genome wide analysis of the large tandem repeats (TR) found in the mouse genome assemblies.</p> <p>Results</p> <p>Using a bioinformatics approach, we identified large TR with array size more than 3 kb in two mouse whole genome shotgun (WGS) assemblies. Large TR were classified based on sequence similarity, chromosome position, monomer length, array variability, and GC content; we identified four superfamilies, eight families, and 62 subfamilies - including 60 not previously described. 1) The superfamily of centromeric minor satellite is only found in the unassembled part of the reference genome. 2) The pericentromeric major satellite is the most abundant superfamily and reveals high order repeat structure. 3) Transposable elements related superfamily contains two families. 4) The superfamily of heterogeneous tandem repeats includes four families. One family is found only in the WGS, while two families represent tandem repeats with either single or multi locus location. Despite multi locus location, TRPC-21A-MM is placed into a separated family due to its abundance, strictly pericentromeric location, and resemblance to big human satellites.</p> <p>To confirm our data, we next performed <it>in situ </it>hybridization with three repeats from distinct families. TRPC-21A-MM probe hybridized to chromosomes 3 and 17, multi locus TR-22A-MM probe hybridized to ten chromosomes, and single locus TR-54B-MM probe hybridized with the long loops that emerge from chromosome ends. In addition to <it>in silico </it>predicted several extra-chromosomes were positive for TR by <it>in situ </it>analysis, potentially indicating inaccurate genome assembly of the heterochromatic genome regions.</p> <p>Conclusions</p> <p>Chromosome-specific TR had been predicted for mouse but no reliable cytogenetic probes were available before. We report new analysis that identified <it>in silico </it>and confirmed <it>in situ </it>3/17 chromosome-specific probe TRPC-21-MM. Thus, the new classification had proven to be useful tool for continuation of genome study, while annotated TR can be the valuable source of cytogenetic probes for chromosome recognition.</p

    Interplay between n-3 and n-6 long-chain polyunsaturated fatty acids and the endocannabinoid system in brain protection and repair.

    Get PDF
    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFA) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) have shown beneficial effects on learning and memory, neuroinflammatory processes and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-archidonoylglycerol (2-AG) are the most widely studied endocannabinoids, and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair

    The role of the complement system in traumatic brain injury: a review

    Get PDF
    Traumatic brain injury (TBI) is an important cause of disability and mortality in the western world. While the initial injury sustained results in damage, it is the subsequent secondary cascade that is thought to be the significant determinant of subsequent outcomes. The changes associated with the secondary injury do not become irreversible until some time after the start of the cascade. This may present a window of opportunity for therapeutic interventions aiming to improve outcomes subsequent to TBI. A prominent contributor to the secondary injury is a multifaceted inflammatory reaction. The complement system plays a notable role in this inflammatory reaction; however, it has often been overlooked in the context of TBI secondary injury. The complement system has homeostatic functions in the uninjured central nervous system (CNS), playing a part in neurodevelopment as well as having protective functions in the fully developed CNS, including protection from infection and inflammation. In the context of CNS injury, it can have a number of deleterious effects, evidence for which primarily comes not only from animal models but also, to a lesser extent, from human post-mortem studies. In stark contrast to this, complement may also promote neurogenesis and plasticity subsequent to CNS injury. This review aims to explore the role of the complement system in TBI secondary injury, by examining evidence from both clinical and animal studies. We examine whether specific complement activation pathways play more prominent roles in TBI than others. We also explore the potential role of complement in post-TBI neuroprotection and CNS repair/regeneration. Finally, we highlight the therapeutic potential of targeting the complement system in the context of TBI and point out certain areas on which future research is needed
    corecore