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Abbreviations
2-AG	� 2-Arachidonoylglycerol
2-AG-LPA	� 2-Arachidonoylglycerol-lysophosphatidic 

acid
2-AG-LPI	� 2-Arachidonoyl-lysophosphatidylinositol
2-DHG	� 2-Docosahexaenoylglycerol
2-EET-EG	� 2-Epoxy-eicosatrienoic acid glycerol
2-EPG	� 2-Eicosapentaenoylglycerol
A-COX	� Acetylated COX-2
ABHD4	� α/β-Hydrolase domain containing 4
ABHD6	� α/β-Hydrolase domain containing 6
ABHD12	� α/β-Hydrolase domain containing 12
AdA	� Adrenic acid
AEA	� N-arachidonoylethanolamide (anandamide)
ARA	� Arachidonic acid
AT	� Aspirin-triggered
COX-2	� Cyclooxygenase-2
CYP	� Cytochrome P450 monooxygenase
DAGL	� Diacylglycerol lipase
DGLA	� Dihomo-γ-linolenic acid
DHA	� Docosahexaenoic acid
DHEA	� N-docosahexaenoylethanolamine 

(synaptamide)
DiHDoHE	� Dihydroxy-docosahexaenoic acid
DiHDPE	� Dihydroxy-docosapentaenoic acid
DiHEPE	� Dihydroxy-eicosapentaenoic acid
DiHETE	� Dihydroxy-eicosatetraenoic acid
DiHETrE	� Dihydroxy-eicosatrienoic acid
DPA	� Docosapentaenoic acid
eCB	� Endocannabinoid
EDP	� Epoxy-docosapentaenoic acid

Abstract  The brain is enriched in arachidonic acid (ARA) 
and docosahexaenoic acid (DHA), long-chain polyun-
saturated fatty acids (LCPUFAs) of the n-6 and n-3 series, 
respectively. Both are essential for optimal brain develop-
ment and function. Dietary enrichment with DHA and other 
long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), 
has shown beneficial effects on learning and memory, neu-
roinflammatory processes, and synaptic plasticity and neu-
rogenesis. ARA, DHA and EPA are precursors to a diverse 
repertoire of bioactive lipid mediators, including endocan-
nabinoids. The endocannabinoid system comprises can-
nabinoid receptors, their endogenous ligands, the endocan-
nabinoids, and their biosynthetic and degradation enzymes. 
Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) 
are the most widely studied endocannabinoids and are both 
derived from phospholipid-bound ARA. The endocannabi-
noid system also has well-established roles in neuroinflam-
mation, synaptic plasticity and neurogenesis, suggesting an 
overlap in the neuroprotective effects observed with these 
different classes of lipids. Indeed, growing evidence suggests 
a complex interplay between n-3 and n-6 LCPUFA and the 
endocannabinoid system. For example, long-term DHA and 
EPA supplementation reduces AEA and 2-AG levels, with 
reciprocal increases in levels of the analogous endocannab-
inoid-like DHA and EPA-derived molecules. This review 
summarises current evidence of this interplay and discusses 
the therapeutic potential for brain protection and repair.
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EET	� Epoxy-eicosatrienoic acid
EET-EA	� Epoxy-eicosatrienoic acid ethanolamide
EETeTr	� Epoxy-eicosatetraenoic acids
EFOX	� Electrophilic fatty acid oxo-derivative
EPA	� Eicosapentaenoic acid
EpDPE	� Epoxy-docosapentaenoic acid
EPEA	� N-eicosapentaenoylethanolamine
EpETE	� Epoxy-eicosapentaenoic acid
EpETrE	� Epoxy-eicosatrienoic acid
Epo	� Epoxygenase
FAAH	� Fatty acid amide hydrolase
GP-NAPE	� Glycerophosphoarachidonoylethanolamide
HDoHE	� Hydroxy-docosahexaenoic acid
HEDPEA	� Hydroxy-epoxy-docosapentaenoylethanola-

mide
HEET-EA	� Hydroxy-epoxy-eicosatrienoic acid 

ethanolamide
HEPE	� Hydroxy-eicosapentaenoic acid
HETE	� Hydroxy-eicosatetraenoic acid
HETE-EA	� Hydroxy-eicosatetraenoic acid 

ethanolamide
HHTrE	� Hydroxy-heptadecatrienoic acid
HpDoHE	� Hydroperoxy-docosahexaenoic acid
HpEPE	� Hydroperoxy-eicosapentaenoic acid
HpETE	� Hydroperoxy-eicosatetraenoic acid
Hx	� Hepoxilin
LCPUFA	� Long-chain polyunsaturated fatty acid
LOX	� Lipoxygenase
Lt	� Leukotriene
LTD	� Long-term depression
LTP	� Long-term potentiation
Lx	� Lipoxin
MAGL	� Monoacylglycerol lipase
MaR	� Maresin
(N)PD1	� (Neuro)protection D1
NAPE-PLD	� N-acyl phosphatidylethanolamine-selective 

phospholipase D
NArPE	� N-arachidonoyl phosphatidylethanolamine
NAT	� N-acyltransferase
oxo-EET	� Oxo-eicosatetraenoic acid
PAEA	� Phospho-anandamide
PD	� Protectin
PDE	� Phosphodiesterase
PE	� Phosphatidylethanolamine
PGD	� Prostaglandin D metabolite
PGE	� Prostaglandin E metabolite
PGF	� Prostaglandin F metabolite
PGI	� Prostacyclin
PGS	� Prostaglandin E, D or F or prostacyclin 

synthase
PI	� Phosphatidylinositol
PLA1	� Phospholipase A1
PLC	� Phospholipase C

PLD	� Phospholipase D
PPAR	� Peroxisome proliferator-activated receptor
PTPN22	� Protein tyrosine phosphatase 22
RvD	� Resolvin D series
RvE	� Resolvin E series
Trx	� Trioxilin
Tx	� Thromboxane
TXS	� Thromboxane synthase
SDA	� Stearidonic acid
SVZ	� Subventricular zone
TRPV-1	� Transient receptor potential vanilloid recep-

tor type 1
ϖ-H	� ϖ-hydrolase

Introduction

N-6 and n-3 long-chain polyunsaturated fatty acids (LCP-
UFA) are essential components of membrane phospholipids 
and also precursors to a large and ever expanding repertoire 
of bioactive lipid mediators. The brain is highly enriched in 
the n-6 PUFA, arachidonic acid (ARA), and the n-3 PUFA, 
docosahexaenoic acid (DHA), with both essential for opti-
mum brain development and function [1]. Elevated dietary 
intake of DHA and eicosapentaenoic acid (EPA), another 
n-3 LCPUFA, has beneficial effects on learning and mem-
ory, decreases neuroinflammatory processes and enhances 
synaptic plasticity and neurogenesis [2]. Similarly, inverse 
relationships are typically observed between fish intake or 
blood DHA levels and age-related cognitive decline [3]. 
However, recent estimates indicate that worldwide many 
populations are currently consuming DHA and EPA at levels 
well below the recommendations issued by many interna-
tional authorities [4–6].

The mode of action of the LCPUFA is still poorly under-
stood and is further complicated by the diverse repertoire of 
bioactive lipid mediators that can be generated. For exam-
ple, ARA is the precursor to a wide range of mediators, 
including the two major endocannabinoids in the brain [7]. 
The endocannabinoid system has similarly been shown to 
have important roles in neuroprotective and pro-neurogenic 
processes, such as attenuating chronic neuroinflammation, 
regulating pro-inflammatory cytokine release and enhanc-
ing synaptic plasticity and adult neurogenesis [8, 9], and 
importantly has shown therapeutic potential in brain ageing 
and neurodegenerative conditions [10].

Thus, there is considerable overlap in effects of n-3 PUFA 
and the endocannabinoid system; however, these different 
classes of lipid mediators have traditionally been viewed and 
researched separately. This view is now being challenged as 
there are a growing number of independent lines of evidence 
suggesting a complex interplay between them. For exam-
ple, analogous series of ethanolamide endocannabinoid-like 
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molecules derived from DHA and EPA have been identified, 
although their biological roles have yet to be established [11, 
12]. Furthermore, in recent elegant work long-term dietary 
n-3 PUFA deficiency in mice abolished endocannabinoid-
mediated neuronal functions across a range of different brain 
regions, showing for the first time how the endocannabi-
noid system can be regulated by manipulation of the dietary 
n-6:n-3 PUFA ratio [13–15]. This is a cause for concern 
as the Western diet typically has an n-6:n-3 PUFA ratio of 
around 15:1, whereas the ideal ratio is thought to be closer 
to 4:1 [16]. This unbalanced intake is reflected in low to 
very low tissue levels of DHA and EPA [17], and may also 
be involved in the aetiology of many diseases, such as car-
diovascular disease, cancer, inflammatory and autoimmune 
diseases [16].

The aim of this review is to summarise current evidence 
of the interplay between n-3 and n-6 LCPUFA and the 
endocannabinoid system and discusses the potential role 
of modifying their levels through dietary manipulation of 
n-6 and n-3 PUFA intake with the aim of ameliorating neu-
roinflammation and enhancing brain protection and repair, 
particularly in ageing.

Metabolism of PUFA and Endocannabinoids

ARA and DHA are the two main PUFA in the brain [2]. 
These LCPUFA can be supplied either preformed from the 
diet or synthesised in the liver from their shorter chain pre-
cursors, linoleic acid (LA, 18:2n-6) and α-linolenic acid 
(ALA, 18:3n-3), respectively [18, 19]. However, the effi-
ciency of conversion in humans is extremely limited [20], 
and due to the shared nature of the biosynthetic pathways, 
imbalances in the dietary intake of LA and ALA will result 
in reciprocal inhibition of the opposing pathway and further 
limit conversion [21]. Therefore, the most efficient way to 
increase tissue levels of LCPUFA is by intake of the pre-
formed LCPUFA. The n-6 and n-3 PUFA biosynthetic path-
ways are shown in detail in Fig. 1. 

Endogenous synthesis of LCPUFA is low within the brain 
compared with uptake from the unesterified plasma fatty 
acid pool [22, 23], suggesting brain levels are maintained via 
uptake from dietary and/or liver sources in blood. Although 
LCPUFAs appear to cross the blood-brain barrier via simple 
diffusion [24], active transporters have been identified that 
may play a role in regulating the specificity of LCPUFA 
concentrations [20]. Further multiple mechanisms including 
β-oxidation, decreased incorporation, elongation and lower 
phospholipid recycling have also been identified, which 
maintain the high ARA and DHA concentration in relation 
to other LCPUFAs [25, 26]. However, brain LCPUFA com-
position is responsive to dietary intake, such that a diet high 
in LA, with an LA:an ALA ratio of 10:1 typical of a Western 

diet decreases brain DHA accretion and increases adrenic 
acid (AdA, docosatetraenoic acid, 22:4n-6) and docosapen-
taenoic acid (DPAn-6, 22:5n-6) levels [27], whereas a diet 
with an LA:ALA ratio of 1:1, more similar to that encoun-
tered during our evolution [16], leads to higher brain DHA 
levels. Imbalances in intake not only compromise brain 
LCPUFA content, but may also impact on the production 
of a wide range of mediators derived from these LCPUFA, 
thereby potentially negatively influencing brain activity and 
function.

The fatty acid composition of neuronal membranes influ-
ences cellular function through direct effects on membrane 
biophysical properties, but also by providing a precursor 
pool for signalling molecules and lipid-derived media-
tors [1]. N-6 and n-3 LCPUFA are the precursors to a vast 
array of bioactive mediators involved in many cellular pro-
cesses, particularly related to the inflammatory response 
[2]. Three main pathways are involved in the production 
of these oxylipin mediators: (1) cyclooxygenase (COX, 
also known as prostaglandin endoperoxide H synthase or 
PGHS) and subsequent synthases, (2) lipoxygenase (LOX) 
and (3) cytochrome P450 mixed function oxidase enzymes 
(CYP) [28]. These canonical pathways produce the classic 
mediators, with those produced from C20 PUFA, such as 
ARA and EPA, called eicosanoids, whereas those from C22 
PUFA, such as DHA, are called docosanoids. Analogous 
series of oxylipins generated from LA, dihomo-γ-linolenic 
acid (DGLA), AdA and ALA and the n-3 docosapentaenoic 
acid (DPAn-3) have also been identified, but their roles are 
not well characterised in the literature and are therefore not 
the focus of this review. However, the interested reader is 
referred to an excellent review by Gabbs and colleagues 
[29].

COX catalyses the initial oxygenation of non-esterified 
fatty acids to produce prostaglandin H (PGH), a short-lived 
intermediate, which is further metabolised into prostanoids, 
such as other prostaglandin series (PGD, PGE, PGF), pros-
tacyclins (PGI), thromboxanes (Tx), and lipoxins (Lx), 
hydroxy and hydroperoxy fatty acids [30]. Vertebrates have 
two principal isoforms of COX: COX-1 and COX-2 [31]. 
COX-1 is constitutively expressed, whereas although COX-2 
is an inducible enzyme in most tissues, in the cortex, hip-
pocampus and amygdala constitutive expression is observed 
[32, 33]. COX-2 is not only a key enzyme in the inflamma-
tory and neuroinflammatory processes, but has important 
roles in the regulation of neural activity, such as learning 
and memory [34]. COX-2 oxygenates a wide range of fatty 
acids and fatty esters [35].

COX-2 was traditionally thought to be responsible for 
causing inflammation and neuroinflammation by convert-
ing ARA to PG and Tx; however, this simplified model has 
been reconsidered with a greater understanding of the deli-
cate balance between positive and negative feedback loops 
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[36]. For example, PGE2 and PGD2 are pro-inflammatory 
mediators responsible for the induction of inflammation, 
but at a later stage in the process are also responsible for 
class switching of eicosanoid production from PG and leu-
kotrienes (Lt) to Lx [36]. It has consistently been shown 
that increasing dietary n-3 PUFA changes the lipid profile 
of membranes and alters the balance of n-6 and n-3 PUFA 
competing as substrates for COX, consequently altering the 

series of prostaglandins synthesised, which ultimately alters 
cellular responses to mitogenic and inflammatory stimuli 
[37–41]. This has been demonstrated in many cells through-
out the body, including glial cells [42].

LOX catalyse the formation of hydroxyl fatty acids 
and their metabolites, such as Lt, Lx and the “specialised 
lipid mediators” (SPM) [29]. These included the resolvins 
(Rv), protectins (PD) and maresins (MaR) derived from 

Fig. 1   N-6 and n-3 PUFA metabolism and lipid mediators produced 
from ARA, DHA and EPA. Synthesis of n-6 and n-3 LCPUFA begins 
with desaturation of LA and ALA to γ-linolenic acid (GLA, 18:3n-
6) and stearidonic acid (18:4n-4), respectively, catalysed by Δ6 
desaturase (FADS2 gene). GLA is elongated to dihomo-γ-linolenic 
acid (DGLA, 20:3n-6) and SDA to eicosatetraenoic acid (20:4n-
3) (ELOVL1 gene). Δ5-Desaturase (FADS1 gene) converts DGLA 
to ARA (20:4n-6) and 20:4n-3 to EPA (timnodonic acid, 20:5n-3). 
Two cycles of elongation (elongase-2, ELOVL2 gene) convert ARA 
to adrenic acid (AdA, 22:4n-6) and then tetracosatetraenoic acid 

(24:4n-6), and EPA to docosapentaenoic acid (DPAn-3, clupanodonic 
acid, 22:5n-3) and then tetracosapentaenoic acid (24:5n-3). A sec-
ond desaturation by Δ6 desaturase produces tetracosapentaenoic acid 
(24:5n-6) and tetracosahexaenoic acid (nisinic acid, 24:6n-3), respec-
tively. These are translocated to the peroxisome for β-oxidation by 
acyl-coenzyme-A oxidase (ACOX1 gene) and d-bifunctional enzyme 
(HSD1784 gene) and peroxisomal thiolases to produce docosapentae-
noic acid (DPAn-6, osbond acid, 22:5n-6) and DHA (cervonic acid, 
22:6n-3), which are translocated back to the endoplasmic reticulum
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n-3 LCPUFA [43]. LOX enzymes are traditionally classi-
fied based on the position of the hydroxyl and hydroper-
oxy fatty acids they produce from ARA, e.g. 5-LOX forms 
5-hydroxy-eicosatetraenoic acid (5-HETE) and 5-hydroper-
oxy-eicosateraenoic acid (5-HpETE); however, this system 
has limitations as the position varies according to different 
chain lengths of the substrates and some LOX act at more 
than one position [29].

The SPMs are a rapidly expanding class of molecules 
involved in the active resolution of inflammation produced 
via COX and LOX catalysed pathways [43]. D-series 
resolvins (RvD), PD and MaR are from produced from 
DHA, whereas E-series resolvins (RvE) are from EPA [44]. 
A further series of RvD and MaR has recently been iden-
tified generated from DPAn-3, including RvD1n-3 DPA and 
MaR1n-3 DPA, which demonstrate similar anti-inflammatory 
and pro-resolving properties to those from DHA and EPA 
[45, 46]. The SPMs act via a series of cell-type specific 
receptors, for example, RvD1 binds GPR32 and lipoxin 
A4 receptor (ALx), and RvE1 binds the ChemR23 orphan 
receptor and leukotriene B4 receptor (BLT1) [47]. The best 
characterised SPM in terms of nervous system protection 
is (neuro)protectin D1 (NPD1, 10R-17S-dihydroxy-doco-
sahexaenoic acid), which is biosynthesised in response to 
injury and may have therapeutic potential in a wide range of 
neurological conditions [48, 49]. In addition, acetylation of 
COX-2 by aspirin blocks PG biosynthesis, but COX-2 is still 
able to produce HETE from ARA, hydroxy-docosahexaenoic 
acid (HDoHE) from DHA and hydroxy-eicosapentaenoic 
acid (HEPE) from EPA, which can be transformed by leu-
kocytes to aspirin-triggered forms of Lx, Rv and PD [50].

A further class of metabolites generated from n-3 PUFA 
by LOX is the electrophilic fatty acid oxo-derivatives 
(EFOX), with 7-oxo-DHA 7-oxo-DPA and 5-oxo-EPA pro-
duced from DHA, DPAn-3 and EPA, respectively [51, 52]. 
EFOXs display a wide range of anti-inflammatory actions, 
including acting as agonists nuclear receptors, such as the 
peroxisome proliferator-activated receptor (PPAR) and 
inhibiting cytokine production in activated macrophages 
[52]. Furthermore, consistent with the formation of aspirin-
triggered SPM, acetylation of COX-2 by aspirin also signifi-
cantly increases the formation of EFOX [2].

The third oxidative pathway involves CYP epoxygenases 
and ϖ-hydrolases, which metabolise PUFA to lipid media-
tors with many diverse biological functions at both the sys-
temic and cellular levels [53, 54]. Regio- and stereoisomers 
of epoxy-eicosatetraenoic acids (EET) and HETE are pro-
duced from ARA, whereas those derived from EPA include 
epoxy-eicosatetraenoic acids (EETeTR) and hydroxy-eicosa-
pentaenoic acids (HEPE) and epoxy-docosapentaenoic acids 
(EDP) and HDoHE from DHA [54]. EPA is the preferred 
substrate for most isoforms of CYP, with metabolism of 
DHA and ARA occurring at similar rates [54]. Expression of 

CYP isoforms occurs in multiple cell types across the brain, 
including astrocytes, neurons and endothelial cells [53].

In addition, n-6 and n-3 PUFAs are also precursors to 
endogenous ligands of the endocannabinoid receptors 
(endocannabinoids). The endocannabinoid system is made 
up of the cannabinoid receptors (CB1 and CB2 receptors), 
endocannabinoids and the enzymes required for endocan-
nabinoid synthesis and degradation [55]. Two families of 
endocannabinoids have been identified, 2-acylglycerols and 
ethanolamides; however, not all congeners are ligands of 
the cannabinoid receptors [56]. The most abundant and best 
characterised endocannabinoids in the brain are the 2-acyl-
glycerol, 2-arachidonoylglycerol (2-AG) and the ethanola-
mide, N-arachidonoylethanolamine (AEA, anandamide), 
which are both derived from ARA [7]. Further n-6 PUFA-
derived endocannabinoids include dihomo-γ-linolenoyl 
ethanolamide, docosatetraenoyl ethanolamide, 2-arachido-
nyl glycerol ether (noladin ether), O-arachidonoylethanola-
mine (virodhamine) and N-arachidonoyldopamine; however, 
although these endocannabinoids can bind to cannabinoid 
receptors, their function is still unclear and will not therefore 
be discussed further in this review [57]. Analogous series 
of endocannabinoids have been identified from n-3 PUFA. 
Alpha-linolenoylethanolamide (ALEA) is produced from 
ALA and has been identified in human plasma, where levels 
were shown to be responsive to dietary ALA supplementa-
tion [58]. However, the best characterised n-3 PUFA-derived 
endocannabinoids are produced from DHA and EPA, with 
the 2-acylglycerols, 2-docosahexaenoylglycerol (2-DHG) 
and 2-eicosapentaenoylglycerol (EPG), and the ethan-
olamides, N-docosahexaenoylethanolamine (DHEA) and 
N-eicosapentaenoylethanolamine (EPEA), generated from 
DHA and EPA, respectively [12, 59]. This review will focus 
on the endocannabinoids derived from ARA, DHA and EPA.

AEA and 2-AG are produced from membrane-bound 
phospholipid ARA, with synthesis occurring at the post-syn-
aptic terminal via increased levels of intracellular calcium 
with both made in response to demand and rapidly degraded 
to ARA or oxygenated to further bioactive mediators [60]. 
The major pathways for the biosynthesis and degradation 
of AEA and 2-AG are described below and summarised in 
Fig. 3. However, the exact nature of these pathways is still 
to be resolved because of the complexity of the endocan-
nabinoid system and presence of multiple often redundant 
pathways [61].

AEA production occurs via a series of steps from the 
membrane phospholipid precursor, sn-1 ARA phosphatidyl-
choline [62]. A calcium-dependent N-acyltransferase (NAT) 
transfers ARA to the nitrogen atom of phosphatidylethan-
olamine (PE) to generate N-arachidonoyl phosphatidyletha-
nolamine (NArPE), which is followed by hydrolysis by an 
N-acyl phosphatidylethanolamine-selective phospholipase 
D (NAPE-PLD) to produce AEA [63]. Further parallel 
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pathways have been identified, whereby NAPE is deacylated 
by α/β-hydrolase domain containing 4 (ABHD4) and either 
the glycerophosphoarachidonoylethanolamide produced 
(GP-NAPE) cleaved by a metal-dependent phosphodies-
terase (PDE) to produce AEA or lyso-NAPE is hydrolysed 
by lyso-NAPE-phospholipase D (PLD) directly to AEA. 
NAPE can also be hydrolysed by phospholipase C (NAPE-
PLC) to generate phospho-anandamide (PAEA), which is 
dephosphorylated by phosphatases such as protein tyrosine 
phosphatase 22 (PTPN22) to AEA [63]. Studies with NAPE-
PLD knock-out mice indicate that NAPE-PLD is the major 
pathway for NAPE hydrolysis; however, the formation of 
AEA in the brain readily occurs via NAPE-PLD-independ-
ent pathways [64, 65].

The major pathway for the synthesis of 2-AG in the 
brain occurs from phosphatidylinositol (PI)-bound ARA 
via phospholipase C-β (PLCβ), which produces sn-1-acyl-
2-arachidonoylglycerol, an ARA-diacylglycerol (DAG) 
[66]. DAG is then hydrolysed into 2-AG by the action of 
diacylglycerol lipases-α or -β (DAGL-α or DAGL-β), with 
the removal of the acyl group [66]. DAGLα appears to be 
the main isoform for 2-AG formation in the brain, as basal 
and stimulus-induced 2-AG content of the brain is greatly 
reduced in DAGLα, but not DAGLβ knock-out mice. [67]. 
Further pathways for the synthesis of 2-AG include dephos-
phorylation of 2-AG-lysophosphatidic acid (2-AG-LPA) by 
an LPA phosphatase (2-LPA-P) or via the sequential action 
of PLA1 converting PI to 2-arachidonoyl-lyso PI (2-AG-LPI) 
and then to 2-AG by lyso phospholipase C (lyso-PLC) [66].

DHEA and EPEA appear to be produced by the same 
biosynthetic pathways as AEA [68], whereas the synthesis 
of 2-DHG and 2-EPG is not well characterised in the litera-
ture. However, it is likely they are produced via the same 
pathways as 2-AG, as chronic DHA and EPA supplementa-
tion reduces 2-AG and AEA levels across a range of tissues 
including the brain, with reciprocal increases in levels of 
DHEA and 2-DHG, and 2-EPG [12, 69–72]. These altera-
tions suggest competition for shared biosynthetic pathways 
as DHA and EPA displace ARA from membrane phospho-
lipids. Interestingly, recent work in our laboratory found that 
acute administration of DHA or EPA significantly increased 
2-AG, although not AEA levels in neural stem cells [73]. 
This increase may be driven by competition for the inacti-
vating enzymes, such as COX-2, although further work is 
needed to fully elucidate the underlying mechanisms.

AEA and 2-AG predominantly act at the guanine-nucle-
otide-binding protein (G protein)-coupled receptor (GPCR) 
cannabinoid receptors, CB1 and CB2 [74]. The CB1 recep-
tor is widely expressed in the brain, where it is the most 
abundant GPCR, highly expressed in the cortex, hippocam-
pus, cerebellum and basal ganglia [74]. CB2 receptors were 
initially identified in cells of the immune system [75], but 
more recently have additionally been described in glia and 

subsets of neurons in the brain [76]. In addition, AEA and 
2-AG have also been shown to act at the orphan receptor, 
GPR55 [77], and peroxisome proliferator-activated recep-
tors (PPAR) [78]. PPARs are nuclear acting transcription 
factors with three subtypes, α, β (δ) and γ, and are involved 
in many cellular processes; for example, PPARγ regulates 
genes involved in neuroinflammatory processes [79]. AEA 
is also a ligand for the transient receptor potential vanilloid 
receptor type 1 (TRPV-1), which is expressed in peripheral 
sensory neurons and in the central nervous (CNS) system, 
where they have a role in regulating synaptic function [80].

Endocannabinoids other than 2-AG and AEA either do 
not bind orthosterically with CB1 or CB2 receptors or bind 
with much lower affinity; however, they still exhibit can-
nabimimetic activities and potentiate the activity of 2-AG 
and AEA, in a phenomenon called the ‘entourage effect’ 
[56, 81]. However, evidence suggests that the relationship 
between 2-AG and AEA and their congeners is much more 
nuanced than this, and other endocannabinoids have been 
reported to either serve as functional antagonists [81] or act 
via non-endocannabinoid pathways. For example, DHEA 
activates protein kinase A (PKA)/cAMP response element 
binding protein (CREB) pathways [82].

Little is known about the process of endocannabinoid 
transport across cell membranes, although a putative endo-
cannabinoid cell membrane transporter has been implicated 
in the control of AEA and 2-AG transport and metabolism 
[83]. The hydrolysis of AEA releases ARA and ethanola-
mine and is principally achieved by the fatty acid amide 
hydrolase (FAAH) enzyme [84], although further yet to be 
identified proteins are likely involved in the process [61]. 
DHEA is also a substrate for FAAH hydrolysis to release 
DHA and ethanolamine [68], whereas the process of EPEA 
hydrolysis has yet to be identified. Unlike the ethanolamides, 
a variety of enzymes are responsible for the degradation of 
2-AG to ARA and glycerol, with three serine hydrolases 
accounting for approximately 99% of hydrolysis in the 
brain [85]. Approximately 85% of 2-AG hydrolysis occurs 
via monoacylglycerol lipase (MAGL), which is co-local-
ised with CB1 receptors in axon terminals [85]. ABHD6 
and ABHD12 account for approximately 4 and 9% of brain 
2-AG hydrolase activity, respectively, with ABHD6 located 
in post-synaptic neurons and ABHD12 is highly expressed 
in microglia [85]. 2-AG hydrolysis may also be catalysed by 
FAAH [86]. The pathways(s) of 2-DPG and 2-EPG hydroly-
sis are currently unknown.

In addition to the direct signalling roles of 2-AG and 
AEA, both are important intermediates in lipid metabolism. 
They act as precursor pools for ARA for the subsequent pro-
duction of eicosanoids [87] and are also converted to fur-
ther classes of bioactive mediators. 2-AG and AEA are sub-
strates for COX-2, producing prostamides and prostaglandin 
glycerol esters, LOX producing hydroperoxy derivatives 
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(HPETE) and CYP enzymes, producing hydroxy-eicosa-
tetraenoic ethanolamide molecules (HETE-EA) or epoxy-
eicosatrienoic acids (EET) [30, 88, 89]. 2-AG can also 
be phosphorylated by acyl glycerol kinase(s) to produce 
lysophosphatidic acid (LPA) [66], another important bioac-
tive lipid [90]. Interestingly, COX-2 metabolites of 2-AG and 
AEA have been shown to have opposing effects to those of 
2-AG and AEA themselves, suggesting a fine balance in the 
control of synaptic transmission between these lipid media-
tors and their oxygenated products [91].

The oxidative metabolism of DHA and EPA-derived 
endocannabinoids is beginning to be elucidated, but there 
is much that is currently unknown. Lipidomic screening 
has identified oxygenated products of DHEA generated 
from LOX and includes 10,17-dihydroxy-docosahexaenoyl 
ethanolamide (10,17-diHDoHE) and hydroxy-16(17)-epoxy-
docosapentaenoyl ethanolamide (HEDPEA) [68]. These 
molecules exhibit anti-inflammatory and organ-protective 
effects in a mouse reperfusion second organ injury [68].

The multiple lipid mediators derived from ARA, DHA 
and EPA are summarised in Fig. 2, where is can be seen 
that the lipidome of ARA is the best characterised; however, 
analogous repertoires of mediators are likely produced from 
DHA and EPA and potentially other PUFAs. Recent devel-
opments in lipidomic analyses have greatly increased interest 
in the discovery, identification and elucidation of the mul-
tiple mediators derived from PUFA and endocannabinoids, 
but much more work is needed to fully develop understand-
ing of their biological activities and the effects of changing 
dietary intake and subsequent phospholipid PUFA composi-
tion on their formation. The remainder of this review will 
summarise current evidence of the interplay between n-3 and 
n-6 LCPUFA and endocannabinoids in neuroinflammation, 
neurogenesis and brain ageing.

Neuroinflammation

Neuroinflammation is the CNS process to restore damaged 
neurons and glia, with microglia and astrocytes the pre-
dominant effectors [92]. Activation of microglia initiates a 
rapid response involving migration, proliferation, and the 
release of cytokines and chemokines [93]. This is initially 
a protective response, but excess neuroinflammation may 
inhibit neuronal regeneration and if it becomes chronic play 
an important role in the pathogenesis of neurodegenerative 
diseases, such as Alzheimer’s disease (AD) and Parkinson’s 
disease (PD), by secreting cytotoxic proteins and reactive 
oxygen species [94].

In the healthy brain microglia display a “resting” phe-
notype responsible for continuous immune monitoring and 
surveillance and also play a key role in regulating neuronal 
plasticity via processes including synaptic pruning and 

neurogenesis [95]. Pathological conditions such as dam-
age to neural cells causes the local “resting” microglia to 
respond by “activation” and rapidly change their phenotype 
and redirect their activity [96]. Depending on the type and 
extent of stimulation the expression of specific genes is 
induced tailoring the microglial phenotype towards either 
the classically activated (M1) pro-inflammatory phenotype 
or the alternatively activated (M2) anti-inflammatory phe-
notype [96], although the further M2a and M2c phenotypes 
have been identified based on the stimulus of induction [97].

Work by our laboratory and others has shown the ele-
vated levels of n-3 PUFA reduces microglial activation and 
subsequent production of pro-inflammatory cytokines in a 
wide variety of models of neuroinflammation, such as amyo-
trophic lateral sclerosis [98], spinal cord injury [99, 100], 
ischaemia [101] and brain ageing [102]. Recent work has 
begun to explore the mechanisms behind these effects. DHA 
down-regulates the cell-surface expression of cluster of dif-
ferentiation 14 (CD14) and Toll-like receptor 4 (TLR4) in 
lipopolysaccharide (LPS)-stimulated microglial cells [103]. 
CD14 is a glycosylphosphatidylinositol-linked protein and 
transduces the signal by associating with other partners, 
especially TLR4 [104].

N-3 PUFA supplementation also inhibits microglial acti-
vation by inhibiting nuclear translocation and secretion of 
high-mobility group box 1 (HMGB1) and HMGB1-mediated 
activation of TLR4/NF-κβ signalling pathways in a model 
of traumatic brain injury [105]. HMGB1 is a central compo-
nent of the late inflammatory response and the translocation 
and secretion of HMGB1 are important steps in HMGB1-
induced inflammation [106]. After release, HMGB1 binds 
to transmembrane TLR4 and activates the TLR4/NF-κB sig-
nalling pathway, ultimately leading to neuroinflammation 
[107]. In this study n-3 PUFA supplementation inhibited the 
translocation of NF-κB p65 from the cytosol to the nucleus, 
reduced NF-κB p65 expression and inhibited the expression 
of the TLR4/NF-κB signalling pathway-associated proteins.

Taken together these results suggest n-3 PUFAs regu-
late microglial activation at several stages; however, these 
effects could be mediated by the n-PUFA themselves or their 
respective SPM. For example, both DHA and NPD1 block 
production of cytokines by microglial cells in a variety of 
retinal and brain injury models [108, 109]. RvD1 and MaR1 
down-regulate in vitro microglia activation [110], RvD2 
inhibits LPS-induced increase of TLR4 in microglia [111], 
and RvE1 alters the inflammatory response and decreases 
microglial activation in several in vivo models [112, 113].

During neuroinflammation there is a general up-regu-
lation of the activity of the endocannabinoid system, with 
predominantly anti-inflammatory effects [114]. However, 
studies looking at the role of endocannabinoids in neuro-
inflammation tend to focus on the role of CB2 receptors, as 
CB2 receptors are more abundant than CB1 on microglia 



	 Lipids

1 3

[115] and CB2 receptor expression is increased in microglia 
and astrocytes during neuroinflammation [74], where they 
attenuate the release of cytokines from activated microglia 
[8]. Furthermore, microglia from CB2 receptor knock-out 
mice show a decrease in phagocytic activity and CB2 recep-
tor antagonists reduce motility of microglia in vitro [116]. 
Furthermore, microglia in brain tissue from patients with 
Alzheimer’s disease (AD), multiple sclerosis and amyo-
trophic lateral sclerosis express CB2 receptors [115]. How-
ever, recent work suggests a more complex story, with the 

endocannabinoid system responsive to the M2 phenotype 
[117]. CB1 and CB2 receptors are down-regulated in M1 
microglia, whereas the M2a and M2c microglia show phe-
notypic changes in the endocannabinoid machinery, such 
that M2a favours 2-AG synthesis and M2c favours AEA. A 
recent study also highlighted the role of endocannabinoids in 
microglia-neuron signalling [118]. Endocannabinoids were 
secreted through microglial extracellular membrane vesicles 
and these extracellular vesicles carry AEA on their surface, 

Fig. 2   Main lipid mediators produced from ARA, DHA and EPA. 
ARA, DHA and EPA are precursors to multiple metabolites, includ-
ing oxylipins produced by cyclooxygenase (COX) and acetylated 
COX-2 (A-COX), lipoxygenase (LOX) and cytochrome P450 (CYP) 
enzymes and the endocannabinoids (eCB). The major pathways in 
the synthesis of ARA, DHA and EPA-derived endocannabinoids 
are shown in Fig.  3. 2-AG 2-arachidonoylglycerol, 2-DHG 2-doco-
sahexaenoylglycerol, 2-EET-EG 2-epoxy-eicosatrienoic acid glyc-
erol, 2-EPG 2-eicosapentaenoylglycerol, ABHD6/12 α/β-Hydrolase 
domain containing 6 or 12, AEA N-arachidonoylethanolamide 
(anandamide), AT aspirin-triggered, DHEA N-docosahexanoyleth-
anolamine (synaptamide), DiHDoHE dihydroxy-docosahexaenoic 
acid, DiHDPE dihydroxy-docosapentaenoic acid, DiHEPE dihy-
droxy-eicosapentaenoic acid, DiHETE dihydroxy-eicosatetraenoic 
acid, DiHETrE dihydroxy-eicosatrienoic acid, EDP epoxy-docos-
apentaenoic acids, EET epoxy-eicosatrienoic acid, EET-EA epoxy-
eicosatrienoic acid ethanolamide, EETeTr epoxy-eicosatetraenoic 
acids, EFOX electrophilic fatty acid oxo-derivatives, EpDPE epoxy-

docosapentaenoic acid, EPEA N-eicosapentaenoylethanolamine, 
EpETE epoxy-eicosapentaenoic acid, EpETrE epoxy-eicosatrienoic 
acid, Epo epoxygenase, FAAH fatty acid amide hydrolase, HDoHE 
hydroxy-docosahexaenoic acid, HEDPEA hydroxy-epoxy-docosap-
entaenoyl ethanolamide, HEET-EA hydroxyepoxy-eicosatrienoic acid 
ethanolamide, HEPE hydroxy-eicosapentaenoic acid, HETE hydroxy-
eicosatetraenoic acid, HETE-EA hydroxy-eicosatetraenoic acid etha-
nolamide, HHTrE hydroxy-heptadecatrienoic acid, HpDoHE hydrop-
eroxy-docosahexaenoic acid, HpEPE hydroperoxy-eicosapentaenoic 
acid, HpETE hydroperoxy-eicosatetraenoic acid, Hx hepoxilin, Lt leu-
kotriene, Lx lipoxin, MAGL monoacylglycerol lipase, MaR maresin, 
(N)PD1 (neuro)protection D1, oxo-EET oxo-eicosatetraenoic acid, 
PGD prostaglandin D metabolite, PGE prostaglandin E metabolite, 
PGF prostaglandin F metabolite, PGI prostacyclin, PGS prostaglan-
din E, D or F or prostacyclin synthase, PD protectin, RvD resolvin 
D series, RvE resolvin E series, Tx thromboxane, TxS thromboxane 
synthase, Trx trioxilin, from DHA and hydroxy-eicosapentaenoic 
ϖ-hydrolase
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which stimulates CB1 receptors on neurons and inhibits 
presynaptic transmission.

In addition to microglia, astrocytes respond to CNS dam-
age and disease via the process of “reactive astrogliosis” 
[119]. In this process astrocytes respond to and also produce 
a wide range of cytokines and inflammatory mediators and 
interact with an array of cell types, thereby mediating cross-
talk between neuroinflammatory and neural systems [120]. 
Astrocytes also have regulatory roles in PUFA metabolism 
and endocannabinoid signalling and promote endocan-
nabinoid crosstalk with other lipid mediators. Astrocytes 
are able to synthesise ARA and DHA from LA and ALA, 
respectively [121], although astrocytic DHA synthesis is 
much lower than brain DHA uptake and utilisation rates, 
suggesting astrocyte synthesis does not provide a major con-
tribution [20]. Astrocytes highly express MAGL and mice 
with specific astrocytic MAGL deletion exhibit moderately 
increased 2-AG and reduced ARA levels and reduced PGE2 
and pro-inflammatory cytokine levels upon LPS administra-
tion, indicating an important role for astrocytes in endocan-
nabinoid signalling in neuroinflammation [122]. Further-
more, using an inducible knock-out system the metabolism 
of 2-AG was shown to be co-ordinately regulated by neurons 

and astrocytes and involved transcellular shuttling of lipid 
substrates, such as ARA and eicosanoids [123]. This astro-
cyte-neuronal crosstalk may provide an integrated regulation 
of 2-AG metabolism and prevent excessive CB1 receptor 
activation.

Taken together, these studies show n-3 PUFA and their 
SPMs, and 2-AG and AEA play important roles in the regu-
lation of the neuroinflammatory responses of microglia and 
astrocytes. However, with a greater understanding of the 
mechanisms by which these lipid mediators interact with 
each other and with microglia, astrocytes and surrounding 
neurons it may be possible to develop effective approaches 
to regulating neuroinflammation via manipulation of dietary 
n-6 and n-3 PUFA intake.

Learning, Memory and Synaptic Plasticity

N-3 PUFA supplementation benefits many aspects of learn-
ing and memory, and although a number of putative tar-
gets have been identified, the exact mechanisms underly-
ing these effects are still unresolved [1]. A study by Pan 
and co-workers suggests that these positive effects may be 

Fig. 3   Interplay in the synthesis and actions of the 2-acylglycerols 
and ethanolamides derived from ARA, DHA and EPA. The major 
pathway for AEA production begins with N-acyltransferase (NAT) 
transferring ARA from phosphatidylcholine (ARA-PC) to phos-
phatidylethanolamine (PE) to generate N-arachidonoyl phosphatidy-
lethanolamine (NArPE), which is followed by hydrolysis by N-acyl 
phosphatidylethanolamine-selective phospholipase D (NAPE-PLD) 
to produce AEA. Further pathways include NAPE deacylation by the 
α/β-hydrolase domain containing 4 (ABHD4) and either the glycer-
ophosphoarachidonoylethanolamide produced (GP-NAPE) cleaved 
by phosphodiesterase (PDE) to produce AEA or lyso-NAPE is hydro-
lysed by lyso-NAPE-phospholipase D (PLD) directly to AEA. NAPE 
can also be hydrolysed by phospholipase C (NAPE-PLC) to gener-
ate phospho-anandamide (PAEA), which is dephosphorylated to AEA 
by phosphatases such as protein tyrosine phosphatase (PTPN22). 
DHEA and EPEA production from phospholipid bound DHA and 
EPA appears to share the same pathways. Synthesis of 2-AG occurs 

from phosphatidylinositol-bound ARA (ARA-PI) via phospholipase 
C-β (PLCβ) and production of an ARA-diacylglycerol (DAG), which 
is hydrolysed by diacylglycerol lipases-α to produce 2-AG. Further 
pathways include dephosphorylation of 2-AG-lysophosphatidic acid 
(2-AG-LPA) by LPA phosphatase (2-LPA-P) or via phospholipase 
A1 (PLA1) converting PI to 2-arachidonoyl-lyso PI (2-AG-LPI) and 
then to 2-AG by lyso phospholipase C (lyso-PLC). The pathways 
of 2-DPG and 2-EPG production are currently unknown. 2-AG and 
AEA act at CB1 and CB2 receptors, GPR55 and PPAR, with AEA 
additionally acting at TRPV-1 (shown in grey). Dietary DHA and 
EPA enrichment decreases phospholipid ARA and increases phos-
pholipid DHA and EPA, and favours production of DHA and EPA-
derived endocannabinoids, whereas acute DHA and EPA treatment 
in vitro increases 2-AG. DHA and EPA also regulate CB1, CB2 
TRPV-1 and PPAR receptor activity and levels. For detailed explana-
tions, refer to the text
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dependent on modulation of the endocannabinoid system 
[124]. The spatial memory of rats treated with DHA sig-
nificantly improved at lower doses (150 or 300 mg/kg/day), 
whereas at a higher level of intake (600 mg/kg/day) it was 
impaired. These in vivo dose-dependent effects were highly 
correlated with similar in vitro dose-dependent up-regula-
tion of CB1 and TRPV-1 receptors in cultured hippocampal 
neurons. The authors concluded that CB1 and TRPV-1 may 
therefore be involved in positive effects of DHA supplemen-
tation on spatial memory, although further work is needed 
to confirm this.

Synaptic plasticity is a widespread CNS phenomenon 
that occurs at both excitatory and inhibitory synapses, where 
changes in synaptic efficacy and strength are induced in 
response to various stimuli, and this potentiation or depres-
sion is thought to underlie phenomena such as learning and 
memory [125]. The endocannabinoid system positively 
modulates many aspects of synaptic plasticity [126], and 
a recent elegant series of studies by Layė and co-workers 
shows the essential role of n-3 PUFA in these effects [13, 
14, 127]. In the first of these studies, long-term n-3 PUFA 
deficiency prevented endocannabinoid-mediated long-term 
synaptic depression (LTD) in the prefrontal cortex and 
nucleus accumbens [13]. Cannabinoid receptors couple to G 
protein type Gi/o and activate signalling pathways [74], and 
in this study CB1 receptors were uncoupled from their G(i/o) 
proteins. In the follow-up studies, similar effects on other 
measures of endocannabinoid-dependent plasticity were also 
found in other brain regions, including the hypothalamus 
[14] and hippocampus [127]. In the hippocampus, loss of 
N-methyl-d-aspartate (NMDA) glutamate receptor-depend-
ent LTP induced by n-3 PUFA deficiency was shown to be 
due to the ablation of endocannabinoid-mediated inhibitory 
LTD (iLTD) [127]. In the hippocampus LTP is gated by 
the process of heterosynaptic iLTD, which is dependent on 
the activation of CB1 receptors [80]. Overall, the role of 
n-PUFA regulation of the endocannabinoid system in learn-
ing, memory and synaptic plasticity appears more complex 
than simply the modulation of endocannabinoid levels, but 
also critically depends on modulating receptor function.

Neurogenesis

Neurogenesis in the adult brain from precursor neural stem 
cells has been identified consistently in two regions, the 
subgranular layer of the hippocampal dentate gyrus and 
the subventricular zone (SVZ), where it has been reported 
in all mammals studied, including humans [128]. The hip-
pocampus is essential for learning and memory formation 
and consolidation and also important in regulating aspects 
of emotion, fear, anxiety and stress [129]. However, the hip-
pocampus is particularly vulnerable to neuroinflammation, 

ageing and neurodegeneration [129]; indeed ageing is the 
greatest negative regulator of hippocampal neurogenesis 
[130]. It is therefore interesting to note that hippocampal 
neurogenesis has been shown to increase following ischae-
mia [131], stroke [132] and seizures [133], where the 
increases may be considered an attempt by the brain at self-
repair. Enhancing hippocampal neurogenesis may therefore 
offer a novel therapeutic approach in the treatment of brain 
ageing and neurodegeneration.

DHA and EPA treatment has consistently been shown to 
increase adult hippocampal neurogenesis across a range of 
animal models [134], also in neural stem cells, where DHA 
appears to promote neuronal differentiation [73]. Similarly, 
the endocannabinoid system is essential for adult neurogen-
esis in both the hippocampus [135, 136] and SVZ [137], 
although studies into the pro-neurogeneic effects of endo-
cannabinoids in the dentate gyrus have produced conflict-
ing results. For example, adult rats treated with the AEA 
analogue methanandamide have significantly decreased 
hippocampal neurogenesis, which is increased by CB1 
antagonists [136]. However, chronic treatment with a syn-
thetic endocannabinoid agonist increases adult hippocampal 
neurogenesis in rats [138], and CB1 receptor knock-out mice 
show significant reductions in neurogenesis in the dentate 
gyrus and SVZ [135]. Pharmacological blockade of DAGL 
and CB2 with specific antagonists inhibits the proliferation 
of neural stem cells and the proliferation of progenitor cells 
in young animals [137]. A similar response is seen with a 
FAAH inhibitor [139]. Overall, the effects of the endocan-
nabinoid system on neurogenesis appear to be a fine balance 
of receptor activation.

Work in our laboratory is the first to explore the role of 
the endocannabinoid system in the pro-neurogeneic effects 
of DHA and EPA [73]. In this study, addition of DHA or 
EPA to neural stem cells induces opposing effects on cell 
fate, which are directed by different signalling pathways. 
Although both DHA and EPA significantly increase 2-AG 
levels, only EPA utilises endocannabinoid signalling path-
ways to increase proliferation. EPA increases prolifera-
tion via CB1/2 receptors, which activate the p38 mitogen-
activated protein kinase (p38 MAPK) signalling pathway. 
DHA was found to decrease cell proliferation, consistent 
with induction of differentiation. It may be hypothesised 
that although 2-AG is increased by DHA, the effects may 
be mitigated and cell fate directed towards differentiation via 
alternative pathways, such as through conversion to DHEA 
[82]. Rashid and co-workers show that DHEA induces dif-
ferentiation of neural stem cells via protein kinase A (PKA)/
cAMP response element binding protein (CREB). It may 
therefore be that DHA and EPA direct cell fate via alterna-
tive pathways determined by the levels and types of media-
tors produced.
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In addition, our study also identified a previously unrec-
ognised role of the immune system in the effects of DHA 
and EPA [73]. DHA and EPA treatment of neural stem cells 
from interleukin-1β (IL-1β) knock-out mice induced effects 
quite distinct from the wild-type cells, whereby prolifera-
tion was increased by DHA and reduced by EPA. As p38 
MAPK was not activated by DHA, this suggests alterative 
non-endocannabinoid pathways were behind the increases 
in proliferation.

The Ageing Brain

Normal brain ageing is characterised by many detrimental 
changes, such as mitochondrial dysfunction and altera-
tions in energy metabolism [140], damage to DNA [141], 
increased microglial activation [142] and increased oxidative 
stress [143]. The ageing brain is also prone to development 
of neurodegenerative diseases, such as AD and PD, but with 
the protracted pre-symptomatic stages it is hard to identify 
what are normal age-related changes and what are effects of 
undetected neurodegeneration [144].

Many epidemiological studies suggest positive associa-
tions between an elevated dietary intake of n-3 PUFA and 
the maintenance of cognitive function in old age [3]. How-
ever, the results of randomised controlled trials in this area 
have been mixed, although positive study outcomes with 
higher doses of DHA in particular in asymptomatic par-
ticipants or those with very mild memory deficits suggest 
supplementation is most effective in the pre-symptomatic 
stage, prior to the onset of mild cognitive impairment or 
dementia [145–147].

Studies in both rodents and humans show that the endo-
cannabinoid system is susceptible to age-related deficits 
[74]. For example, CB1 receptor levels decrease, along 
with the activity NAPE-PLD and DAGL [74]. Furthermore, 
decreases in DAGL, coupled with elevated MAGL, leads 
to specific decreases in 2-AG levels in the hippocampus 
of ageing mice [148]. Using mouse genetic CB1 receptor 
knock-out models, it is possible to mimic the effects of these 
age-related changes [74]. CB1 receptor deletion leads to an 
age-dependent acceleration of cognitive decline with accel-
erated hippocampal neuronal loss and increases aspects of 
neuroinflammation, such as reactive astrogliosis and micro-
glial activation.

These studies suggest that the age-related decline of spe-
cific components of the endocannabinoid system accelerates 
key aspects of brain ageing; therefore, through the restora-
tion or reversal of the age-related effects it may be able to 
decrease this decline. In addition to modulating the levels 
of 2-AG and AEA, expressions of CB1 receptors, TRPV-1 
and PPARγ have all been shown to be responsive to n-3 
PUFA treatment [79, 124], suggesting that n-3 PUFA may be 

able to mitigate or reverse some of these age-related losses. 
Furthermore, these positive effects on the endocannabinoid 
system may potentially contribute to some of the protective 
effects of n-3 PUFA observed in studies in ageing. However, 
much more research is required to develop our understand-
ing of the mechanisms underlying these effects and the con-
sequences for the endocannabinoid system to maximise the 
therapeutic potential of n-3 PUFA in brain protection and 
repair.

Conclusions

Due to their fundamental nature, ARA, DHA, EPA and 
their mediators and the endocannabinoid system have wide-
ranging effects across the CNS and recent evidence strongly 
indicates a complex interplay between them. The levels of 
phospholipid-bound ARA determine the levels of 2-AG and 
AEA, which in addition to their own biological activities act 
as reservoirs of ARA for subsequent eicosanoid production. 
Importantly, brain LCPUFA levels are responsive to dietary 
intake, and the n-6:n-3 PUFA ratio of the current Western 
diet may lead to increased neuroinflammation and also over-
stimulation of the endocannabinoid system.

Neuroinflammation is a key feature of brain ageing and 
neurodegeneration and the development of new therapeutic 
approaches is necessary. Epidemiological studies consist-
ently show beneficial effects of an elevated intake of DHA 
and EPA; however, these observations have so far failed to 
lead to new treatments. Trials typically provide n-3 PUFA 
in the form of fish oils, mixed DHA and EPA preparations 
or separate DHA and EPA, with limited consideration of the 
background levels of n-6 PUFA. It is hoped that a greater 
understanding of the relationship among ARA, DHA, EPA 
and the endocannabinoid system will lead to advances in 
developing their therapeutic potential and ultimately lead to 
the development of more targeted treatment options for brain 
protection and repair.
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