26 research outputs found

    A survey of case studies on the use of forensic three-dimensional printing in England and Wales

    Get PDF
    3D printing has rapidly developed and been applied in forensic science due to its use in creating demonstrations for courts of law. Much of the literature on this specific topic has focused on the use of 3D printed models in academia, the potential influence on a jury, and its use as a long-term documentation process, but with few actual forensic case examples. This paper offers an insight into the development of 3D printing in forensic practice and how 3D printing is currently being used in the criminal justice system in England and Wales. A series of case reports were gathered from multiple police forces and forensic practitioners in the UK to identify how 3D printing was being used. These discussions established who was requesting 3D printed exhibits, what type of technologies were being utilised, what type of exhibits were being printed, and resulting feedback for the use of 3D printed material within a criminal case. As a result, this research demonstrates the current use of 3D printing in England and Wales, discussing the associated cases that have been known to incorporate 3D prints. Likewise, this work explores the limitations that have been encountered by forensic practitioners and identifies a series of research questions that should be considered in future investigations

    A survey of case studies on the use of forensic three-dimensional printing in England and Wales.

    Get PDF
    3D printing has rapidly developed and been applied in forensic science due to its use in creating demonstrations for courts of law. Much of the literature on this specific topic has focused on the use of 3D printed models in academia, the potential influence on a jury, and its use as a long-term documentation process, but with few actual forensic case examples. This paper offers an insight into the development of 3D printing in forensic practice and how 3D printing is currently being used in the criminal justice system in England and Wales.A series of case reports were gathered from multiple police forces and forensic practitioners in the UK to identify how 3D printing was being used. These discussions established who was requesting 3D printed exhibits, what type of technologies were being utilised, what type of exhibits were being printed, and resulting feedback for the use of 3D printed material within a criminal case. As a result, this research demonstrates the current use of 3D printing in England and Wales, discussing the associated cases that have been known to incorporate 3D prints. Likewise, this work explores the limitations that have been encountered by forensic practitioners and identifies a series of research questions that should be considered in future investigations

    Frequency of macroscopic intradural hemorrhage with and without subdural hemorrhage in early childhood autopsies.

    No full text
    Some authors have suggested that in the fetus, neonate and infant, intradural hemorrhage (IDH) is relatively common and often presents alongside subdural hemorrhage (SDH). These authors have theorized that pediatric SDH may result from an IDH due to blood leakage from a dural vascular plexus. In this study, we report the inter-observer variation for detection of IDH from a retrospectively collected series of pediatric autopsy photographs, with and without SDH. Autopsy photographs of the falx and tentorium from 27 neonatal, infant and early childhood autopsies were assessed by two independent consultant forensic pathologists blinded to all case histories for the presence and extent (focal or diffuse) of IDH. Inter-observer agreement between the pathologists was calculated using Cohen's kappa coefficient. The occurrence of subdural hemorrhage was also recorded at autopsy. A kappa coefficient value of 0.669 (p = 0.001), indicated a substantial level of agreement for the presence/absence of IDH between the pathologists. For the extent of IDH a kappa coefficient value of 0.6 (p = 0.038) indicated a moderate level of agreement. The pathologists agreed on the presence of IDH in 10 of the 27 cases. Subdural hemorrhage was recorded for 8 out of 27 cases. Of these 8 cases, it was agreed that 4 had IDH. Using standardized methods of image capture and assessment, inter-observer agreement for the presence/absence of IDH was substantial. In this paper, we report a much lower frequency of macroscopic IDH occurring alongside SDH than previous studies, which included both gross observation of IDH and histological examination

    Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces

    No full text
    Although adhesive interactions between cells and nanostructured interfaces have been studied extensively(1–6), there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography(7) to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells’ focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells toward higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces

    Directional nanotopographic gradients: a high-throughput screening platform for cell contact guidance

    Get PDF
    A novel approach was developed using PDMS-substrates with surface-aligned nanotopography gradients, varying unidirectional in amplitude and wavelength, for studying cell behavior with regard to adhesion and alignment. The gradients target more surface feature parameters simultaneously and provide more information with fewer experiments and are therefore vastly superior with respect to individual topography substrates. Cellular adhesion experiments on non-gradient aligned nanowrinkled surfaces displayed a linear relationship of osteoblast cell adhesion with respect to topography aspect ratio. Additionally, an aspect ratio of 0.25 was found to be most efficient for cell alignment. Modification of the surface preparation method allowed us to develop an approach for creating surface nanotopography gradients which innovatively provided a superior data collection with fewer experiments showing that 1) low amplitude with small wavenumber is best for osteoblast cell adhesion 2) indeed higher aspect ratios are favorable for alignment however only with features between 80-180 nm in amplitude and 450-750 nm in wavelength with a clear transition between adhesion and alignment efficiency and 3) disproved a linear relationship of cell adhesion towards aspect ratio as was found for single feature substrate analysis
    corecore