13 research outputs found

    Responses of two Mediterranean seagrasses to experimental changes in salinity

    Get PDF
    The aim of this study is to examine the effects of variations in salinity levels on growth and survival of two fast-growing Mediterranean seagrasses, Cymodocea nodosa and Zostera noltii. We also tested the capacity of C. nodosa to acclimate to a gradual increase in salinity and to discover how it responds to a sharp rise in salinity in combination with other factors, such as increases in temperature, seasonality and different plant-population origins. Several short-term (10 days) experiments were conducted under controlled conditions. For each experiment, ten marked shoots were placed in 5-l aquaria, where they were exposed to different salinity treatments (ranging from 2 to 72 psu). Growth and survival of both species were significantly affected by salinity. A significant effect between salinity and temperature on the shoot growth rate of C. nodosa was also detected, but not on shoot mortality. When C. nodosa plants were acclimated by gradually increasing the salinity level, it was observed that acclimatisation improved tolerance to salinity changes. A different response to salinity variations, depending on the origin of the plants or the season of the year, was also detected. These results indicated that Z. noltii plants tolerate conditions of hyposalinity better than C. nodosa, and that the tolerance range of C. nodosa may change depending on the temperature, the season or the population.This research was financed by an ACUAMED contract and by an FPI grant (FPI 01 A 002) from the Generalitat Valenciana

    Genetic structure in the Mediterranean seagrass Posidonia oceanica: disentangling past vicariance events from contemporary patterns of gene flow

    No full text
    The Mediterranean Sea is a two-basin system, with the boundary zone restricted to the Strait of Sicily and the narrow Strait of Messina. Two main population groups are recognized in the Mediterranean endemic seagrass Posidonia oceanica, corresponding to the Western and the Eastern basins. To address the nature of the East–West cleavage in P. oceanica, the main aims of this study were: (i) to define the genetic structure within the potential contact zone (i.e. the Strait of Sicily) and clarify the extent of gene flow between the two population groups, and (ii) to investigate the role of present water circulation patterns vs. past evolutionary events on the observed genetic pattern. To achieve these goals, we utilized SSR markers and we simulated, with respect to current regime, the possible present-day dispersal pattern of Posidonia floating fruits using 28-day numerical Lagrangian trajectories. The results obtained confirm the presence of the two main population groups, without any indices of reproductive isolation, with the break zone located at the level of the Southern tip of Calabria. The populations in the Strait of Sicily showed higher affinity with Western than with Eastern populations. This pattern of genetic structure probably reflects historical avenues of recolonization from relict glacial areas and past vicariance events, but seems to persist as a result of the low connectivity among populations via marine currents, as suggested by our dispersal simulation analysis

    Clonal architecture in an intertidal bed of the dwarf eelgrass Zostera noltii in the Northern Wadden Sea: persistence through extreme physical perturbation and the importance of a seed bank

    Get PDF
    Genotypic structure and temporal dynamics of the dwarf seagrass, Zostera noltii, were studied in an intertidal meadow that has persisted since prior to 1936 near the Wadden Sea island of Sylt. Samples were collected from two 10 × 10 m plots separated by 250 m from May 2002 to June 2005 and from four 1 × 1 m plots from June 2003 to September 2004. All the samples were genotyped with nine microsatellite loci. No genotypes were shared between the plots separated by 250 m. Genetic diversity was higher in the Wadden Sea than in the other regions of its geographic range. The average clone size (genets) (SD) in the two plots was 1.38 (0.26) and 1.46 (0.4) m², respectively, with a range up to 9 m² and <20% persisted for >4 years. A high genetic and genotypic diversity was maintained by annual recruitment of seedlings despite a dramatic decrease in ramet density that coincided with the severe heat stress event of 2003. Fine-scale (1 m²) analysis suggested that extensive loss of seagrass cover precluded space competition among the genets, while a persistent seed bank prevented local extinction. Long-term persistence of Z. noltii meadows in the intertidal Wadden Sea was achieved by high genet turnover and frequent seedling recruitment from a seed bank, in contrast to the low diversity observed in large and long-living clones of Z. noltii and other seagrasses in subtidal habitats
    corecore