56 research outputs found
Patient-maintained sedation for oral surgery using a target-controlled infusion of propofol - a pilot study
OBJECTIVE: To assess the safety and efficacy of a new patient-maintained propofol system for conscious sedation in dentistry. DESIGN: Prospective clinical trial SETTING: Department of Sedation, Glasgow Dental Hospital and School, 2001 SUBJECTS AND METHODS: Patients scheduled for oral surgery with conscious sedation. Exclusions included ASA IV -V, inability to use the handset, opioid use and severe respiratory disease. INTERVENTIONS: Patients were given intravenous propofol to a level of 1.0 microg/ml (reducing from 1.5 microg/ml) using a target controlled infusion system, they then controlled their sedation level by double-clicking a handset which on each activation increased the propofol concentration by 0.2 microg/ml. MAIN OUTCOME MEASURES: Oxygen saturation, patient satisfaction, and surgeon satisfaction. RESULTS: Twenty patients were recruited, 16 female and four male. Nineteen patients completed sedation and treatment successfully. Mean lowest oxygen saturation was 94%. No patients were over-sedated. All patients successfully used the system to maintain a level of sedation adequate for their comfort. Patient and surgeon satisfaction were consistently high. CONCLUSIONS: Initial experience with this novel system has confirmed safety, patient satisfaction and surgeon satisfaction
Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model
Intracellular dynamics of airway smooth muscle cells (ASMC) mediate ASMC contraction and proliferation, and thus play a key role in airway hyper-responsiveness (AHR) and remodelling in asthma. We evaluate the importance of store-operated entry (SOCE) in these dynamics by constructing a mathematical model of ASMC signaling based on experimental data from lung slices. The model confirms that SOCE is elicited upon sufficient depletion of the sarcoplasmic reticulum (SR), while receptor-operated entry (ROCE) is inhibited in such conditions. It also shows that SOCE can sustain agonist-induced oscillations in the absence of other influx. SOCE up-regulation may thus contribute to AHR by increasing the oscillation frequency that in turn regulates ASMC contraction. The model also provides an explanation for the failure of the SERCA pump blocker CPA to clamp the cytosolic of ASMC in lung slices, by showing that CPA is unable to maintain the SR empty of . This prediction is confirmed by experimental data from mouse lung slices, and strongly suggests that CPA only partially inhibits SERCA in ASMC
Phase-Locked Signals Elucidate Circuit Architecture of an Oscillatory Pathway
This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways
Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes
Recent years have witnessed an increasing interest in neuron-glia
communication. This interest stems from the realization that glia participates
in cognitive functions and information processing and is involved in many brain
disorders and neurodegenerative diseases. An important process in neuron-glia
communications is astrocyte encoding of synaptic information transfer: the
modulation of intracellular calcium dynamics in astrocytes in response to
synaptic activity. Here, we derive and investigate a concise mathematical model
for glutamate-induced astrocytic intracellular Ca2+ dynamics that captures the
essential biochemical features of the regulatory pathway of inositol
1,4,5-trisphosphate (IP3). Starting from the well-known two-state Li-Rinzel
model for calcium-induced-calcium release, we incorporate the regulation of the
IP3 production and phosphorylation. Doing so we extended it to a three-state
model (referred as the G-ChI model), that could account for Ca2+ oscillations
triggered by endogenous IP3 metabolism as well as by IP3 production by external
glutamate signals. Compared to previous similar models, our three-state models
include a more realistic description of the IP3 production and degradation
pathways, lumping together their essential nonlinearities within a concise
formulation. Using bifurcation analysis and time simulations, we demonstrate
the existence of new putative dynamical features. The cross-couplings between
IP3 and Ca2+ pathways endows the system with self-consistent oscillator
properties and favor mixed frequency-amplitude encoding modes over pure
amplitude modulation ones. These and additional results of our model are in
general agreement with available experimental data and may have important
implications on the role of astrocytes in the synaptic transfer of information.Comment: 42 pages, 16 figures, 1 table. Figure filenames mirror figure order
in the paper. Ending "S" in figure filenames stands for "Supplementary
Figure". This article was selected by the Faculty of 1000 Biology: "Genevieve
Dupont: Faculty of 1000 Biology, 4 Sep 2009" at
http://www.f1000biology.com/article/id/1163674/evaluatio
Global food security and food riots – an agent-based modelling approach
Due to negative consequences of climate change for agriculture and food production shocks affecting different areas of the world, the past two decades saw the conditions of global food security increasingly worsen. This has resulted in negative consequences for the world economy, partly causing international food price spikes and social upheavals. In this paper we present statistical findings along with a preliminary version of an original agent-based model called the Dawe Global Security Model that simulates the global food market and the political fragility of countries. The model simulates the effects of food insecurity on international food prices and how these, coupled with national political fragility and international food trade can, in turn, increase the probability of food riots in countries. The agents in the model are the 213 countries of the world whose characteristics reflect empirical data and the international trade of food is also simulated based on real trade partnerships and data. The model has been informed, calibrated and validated using real data and the results of these procedures are presented in the paper. To further test the model we also present the model’s forecasts for the near future in terms of food prices and incidence of food riots. The Dawe Global Security Model can be used to test scenarios on the evolution of shocks to global food production and analyse consequences for food riots. Further developments of the model can include national responses to food crises to investigate how countries can influence the spread of global food crises
Modeling and Analysis of the Molecular Basis of Pain in Sensory Neurons
Intracellular calcium dynamics are critical to cellular functions like pain transmission. Extracellular ATP plays an important role in modulating intracellular calcium levels by interacting with the P2 family of surface receptors. In this study, we developed a mechanistic mathematical model of ATP-induced P2 mediated calcium signaling in archetype sensory neurons. The model architecture, which described 90 species connected by 162 interactions, was formulated by aggregating disparate molecular modules from literature. Unlike previous models, only mass action kinetics were used to describe the rate of molecular interactions. Thus, the majority of the 252 unknown model parameters were either association, dissociation or catalytic rate constants. Model parameters were estimated from nine independent data sets taken from multiple laboratories. The training data consisted of both dynamic and steady-state measurements. However, because of the complexity of the calcium network, we were unable to estimate unique model parameters. Instead, we estimated a family or ensemble of probable parameter sets using a multi-objective thermal ensemble method. Each member of the ensemble met an error criterion and was located along or near the optimal trade-off surface between the individual training data sets. The model quantitatively reproduced experimental measurements from dorsal root ganglion neurons as a function of extracellular ATP forcing. Hypothesized architecture linking phosphoinositide regulation with P2X receptor activity explained the inhibition of P2X-mediated current flow by activated metabotropic P2Y receptors. Sensitivity analysis using individual and the whole system outputs suggested which molecular subsystems were most important following P2 activation. Taken together, modeling and analysis of ATP-induced P2 mediated calcium signaling generated qualitative insight into the critical interactions controlling ATP induced calcium dynamics. Understanding these critical interactions may prove useful for the design of the next generation of molecular pain management strategies
Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks
A new paradigm has recently emerged in brain science whereby communications
between glial cells and neuron-glia interactions should be considered together
with neurons and their networks to understand higher brain functions. In
particular, astrocytes, the main type of glial cells in the cortex, have been
shown to communicate with neurons and with each other. They are thought to form
a gap-junction-coupled syncytium supporting cell-cell communication via
propagating Ca2+ waves. An identified mode of propagation is based on
cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP3) through gap
junctions that locally trigger Ca2+ pulses via IP3-dependent Ca2+-induced Ca2+
release. It is, however, currently unknown whether this intracellular route is
able to support the propagation of long-distance regenerative Ca2+ waves or is
restricted to short-distance signaling. Furthermore, the influence of the
intracellular signaling dynamics on intercellular propagation remains to be
understood. In this work, we propose a model of the gap-junctional route for
intercellular Ca2+ wave propagation in astrocytes showing that: (1)
long-distance regenerative signaling requires nonlinear coupling in the gap
junctions, and (2) even with nonlinear gap junctions, long-distance
regenerative signaling is favored when the internal Ca2+ dynamics implements
frequency modulation-encoding oscillations with pulsating dynamics, while
amplitude modulation-encoding dynamics tends to restrict the propagation range.
As a result, spatially heterogeneous molecular properties and/or weak couplings
are shown to give rise to rich spatiotemporal dynamics that support complex
propagation behaviors. These results shed new light on the mechanisms
implicated in the propagation of Ca2+ waves across astrocytes and precise the
conditions under which glial cells may participate in information processing in
the brain.Comment: Article: 30 pages, 7 figures. Supplementary Material: 11 pages, 6
figure
Endoplasmic Reticulum Remodeling Tunes IP3-Dependent Ca2+ Release Sensitivity
The activation of vertebrate development at fertilization relies on IP3-dependent Ca2+ release, a pathway that is sensitized during oocyte maturation. This sensitization has been shown to correlate with the remodeling of the endoplasmic reticulum into large ER patches, however the mechanisms involved are not clear. Here we show that IP3 receptors within ER patches have a higher sensitivity to IP3 than those in the neighboring reticular ER. The lateral diffusion rate of IP3 receptors in both ER domains is similar, and ER patches dynamically fuse with reticular ER, arguing that IP3 receptors exchange freely between the two ER compartments. These results suggest that increasing the density of IP3 receptors through ER remodeling is sufficient to sensitize IP3-dependent Ca2+ release. Mathematical modeling supports this concept of ‘geometric sensitization’ of IP3 receptors as a population, and argues that it depends on enhanced Ca2+-dependent cooperativity at sub-threshold IP3 concentrations. This represents a novel mechanism of tuning the sensitivity of IP3 receptors through ER remodeling during meiosis
Regulation of cell-to-cell communication mediated by astrocytic ATP in the CNS
It has become apparent that glial cells, especially astrocytes, not merely supportive but are integrative, being able to receive inputs, assimilate information and send instructive chemical signals to other neighboring cells including neurons. At first, the excitatory neurotransmitter glutamate was found to be a major extracellular messenger that mediates these communications because it can be released from astrocytes in a Ca2+-dependent manner, diffused, and can stimulate extra-synaptic glutamate receptors in adjacent neurons, leading to a dynamic modification of synaptic transmission. However, recently extracellular ATP has come into the limelight as an important extracellular messenger for these communications. Astrocytes express various neurotransmitter receptors including P2 receptors, release ATP in response to various stimuli and respond to extracellular ATP to cause various physiological responses. The intercellular communication “Ca2+ wave” in astrocytes was found to be mainly mediated by the release of ATP and the activation of P2 receptors, suggesting that ATP is a dominant “gliotransmitter” between astrocytes. Because neurons also express various P2 receptors and synapses are surrounded by astrocytes, astrocytic ATP could affect neuronal activities and even dynamically regulate synaptic transmission in adjacent neurons as if forming a “tripartite synapse” In this review, we summarize the role of astrocytic ATP, as compared with glutamate, in gliotransmission and synaptic transmission in neighboring cells, mainly focusing on the hippocampus. Dynamic communication between astrocytes and neurons mediated by ATP would be a key event in the processing or integration of information in the CNS
- …