172 research outputs found

    Copper-catalysed selective hydroamination reactions of alkynes

    Get PDF
    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of ​rivastigmine and the formal synthesis of several other pharmaceutical agents, including ​duloxetine, ​atomoxetine, ​fluoxetine and ​tolterodine.National Institutes of Health (U.S.) (GM58160

    ‘1-8 interferon inducible gene family': putative colon carcinoma-associated antigens

    Get PDF
    Db−/−xβ2 microglobulin (β2m) null mice transgenic for a chimeric HLA-A2.1/Db-β2m single chain (HHD mice) are an effective biological tool to evaluate the antitumour cytotoxic T-lymphocyte response of known major histocompatibility-restricted peptide tumour-associated antigens, and to screen for putative unknown novel peptides. We utilised HHD lymphocytes to identify immunodominant epitopes of colon carcinoma overexpressed genes. We screened with HHD-derived lymphocytes over 500 HLA-A2.1-restricted peptides derived from colon carcinoma overexpressed genes. This procedure culminated in the identification of seven immunogenic peptides, three of these were derived from the ‘human 1-8D gene from interferon inducible gene' (1-8D). The 1-8D gene was shown to be overexpressed in fresh tumour samples. The three 1-8D peptides were both antigenic and immunogenic in the HHD mice. The peptides induce cytotoxic T lymphocytes that were able to kill a colon carcinoma cell line HCT/HHD, in vitro and retard its growth in vivo. One of the peptides shared by all the 1-8 gene family primed efficiently normal human cytotoxic T lymphocyte precursors. These results highlight the 1-8D gene and its homologues as putative immunodominant tumour-associated antigens of colon carcinoma

    Species-Specific Expansion and Molecular Evolution of the 3-hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Plants

    Get PDF
    Kazakh dandelion (Taraxacum kok-saghyz, Tk) is a rubber-producing plant currently being investigated as a source of natural rubber for industrial applications. Like many other isoprenoids, rubber is a downstream product of the mevalonate pathway. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the conversion of 3-hydroxy-3-methylglutaryl-CoA to mevalonic acid, a key regulatory step in the MVA pathway. Such regulated steps provide targets for increases in isoprenoid and rubber contents via genetic engineering to increase enzyme activities. In this study, we identify a TkHMGR1 gene that is highly expressed in the roots of Kazakh dandelion, the main tissue where rubber is synthesized and stored. This finding paves the way for further molecular and genetic studies of the TkHMGR1 gene, and its role in rubber biosynthesis in Tk and other rubber-producing plants

    H2AX phosphorylation screen of cells from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype

    Get PDF
    BACKGROUND: About 1-5% of cancer patients suffer from significant normal tissue reactions as a result of radiotherapy (RT). It is not possible at this time to predict how most patients' normal tissues will respond to RT. DNA repair dysfunction is implicated in sensitivity to RT particularly in genes that mediate the repair of DNA double-strand breaks (DSBs). Phosphorylation of histone H2AX (phosphorylated molecules are known as gammaH2AX) occurs rapidly in response to DNA DSBs, and, among its other roles, contributes to repair protein recruitment to these damaged sites. Mammalian cell lines have also been crucial in facilitating the successful cloning of many DNA DSB repair genes; yet, very few mutant cell lines exist for non-syndromic clinical radiosensitivity (RS).\ud \ud METHODS: Here, we survey DNA DSB induction and repair in whole cells from RS patients, as revealed by gammaH2AX foci assays, as potential predictive markers of clinical radiation response.\ud \ud RESULTS: With one exception, both DNA focus induction and repair in cell lines from RS patients were comparable with controls. Using gammaH2AX foci assays, we identified a RS cancer patient cell line with a novel ionising radiation-induced DNA DSB repair defect; these data were confirmed by an independent DNA DSB repair assay.\ud \ud CONCLUSION: gammaH2AX focus measurement has limited scope as a pre-RT predictive assay in lymphoblast cell lines from RT patients; however, the assay can successfully identify novel DNA DSB repair-defective patient cell lines, thus potentially facilitating the discovery of novel constitutional contributions to clinical RS

    Which Lynch syndrome screening programs could be implemented in the "real world"? A systematic review of economic evaluations

    Get PDF
    Purpose: Lynch syndrome (LS) screening can significantly reduce cancer morbidity and mortality in mutation carriers. Our aim was to identify cost-effective LS screening programs that can be implemented in the "real world."Methods: We performed a systematic review of full economic evaluations of genetic screening for LS in different target populations; health outcomes were estimated in life-years gained or quality-adjusted life-years.Results: Overall, 20 studies were included in the systematic review. Based on the study populations, we identified six categories of LS screening program: colorectal cancer (CRC)-based, endometrial cancer-based, general population-based, LS family registry-based, cascade testing-based, and genetics clinic-based screening programs. We performed an in-depth analysis of CRC-based LS programs, classifying them into three additional subcategories: universal, age-targeted, and selective. In five studies, universal programs based on immunohistochemistry, either alone or in combination with the BRAF test, were cost-effective compared with no screening, while in two studies age-targeted programs with a cutoff of 70 years were cost-effective when compared with age-targeted programs with lower age thresholds. Conclusion: Universal or <70 years-age-targeted CRC-based LS screening programs are cost-effective and should be implemented in the "real world

    Rad21-Cohesin Haploinsufficiency Impedes DNA Repair and Enhances Gastrointestinal Radiosensitivity in Mice

    Get PDF
    Approximately half of cancer-affected patients receive radiotherapy (RT). The doses delivered have been determined upon empirical experience based upon average radiation responses. Ideally higher curative radiation doses might be employed in patients with genuinely normal radiation responses and importantly radiation hypersensitive patients would be spared the consequences of excessive tissue damage if they were indentified before treatment. Rad21 is an integral subunit of the cohesin complex, which regulates chromosome segregation and DNA damage responses in eukaryotes. We show here, by targeted inactivation of this key cohesin component in mice, that Rad21 is a DNA-damage response gene that markedly affects animal and cell survival. Biallelic deletion of Rad21 results in early embryonic death. Rad21 heterozygous mutant cells are defective in homologous recombination (HR)-mediated gene targeting and sister chromatid exchanges. Rad21+/− animals exhibited sensitivity considerably greater than control littermates when challenged with whole body irradiation (WBI). Importantly, Rad21+/− animals are significantly more sensitive to WBI than Atm heterozygous mutant mice. Since supralethal WBI of mammals most typically leads to death via damage to the gastrointestinal tract (GIT) or the haematopoietic system, we determined the functional status of these organs in the irradiated animals. We found evidence for GIT hypersensitivity of the Rad21 mutants and impaired bone marrow stem cell clonogenic regeneration. These data indicate that Rad21 gene dosage is critical for the ionising radiation (IR) response. Rad21 mutant mice thus represent a new mammalian model for understanding the molecular basis of irradiation effects on normal tissues and have important implications in the understanding of acute radiation toxicity in normal tissues

    RNA-Seq Identifies SNP Markers for Growth Traits in Rainbow Trout

    Get PDF
    Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to select for growth traits; however, genetic improvement is slow over generations. Single nucleotide polymorphisms (SNPs) explain 90% of the genetic differences between individuals; therefore, they are most suitable for genetic evaluation and strategies that employ molecular genetics for selective breeding. SNPs found within or near a coding sequence are of particular interest because they are more likely to alter the biological function of a protein. We aimed to use SNPs to identify markers and genes associated with genetic variation in growth. RNA-Seq whole-transcriptome analysis of pooled cDNA samples from a population of rainbow trout selected for improved growth versus unselected genetic cohorts (10 fish from 1 full-sib family each) identified SNP markers associated with growth-rate. The allelic imbalances (the ratio between the allele frequencies of the fast growing sample and that of the slow growing sample) were considered at scores >5.0 as an amplification and <0.2 as loss of heterozygosity. A subset of SNPs (n = 54) were validated and evaluated for association with growth traits in 778 individuals of a three-generation parent/offspring panel representing 40 families. Twenty-two SNP markers and one mitochondrial haplotype were significantly associated with growth traits. Polymorphism of 48 of the markers was confirmed in other commercially important aquaculture stocks. Many markers were clustered into genes of metabolic energy production pathways and are suitable candidates for genetic selection. The study demonstrates that RNA-Seq at low sequence coverage of divergent populations is a fast and effective means of identifying SNPs, with allelic imbalances between phenotypes. This technique is suitable for marker development in non-model species lacking complete and well-annotated genome reference sequences
    • …
    corecore