104 research outputs found

    Parasitic Nematodes Modulate PIN-Mediated Auxin Transport to Facilitate Infection

    Get PDF
    Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process

    Parameters influencing the size of chitosan-TPP nano- and microparticles

    Get PDF
    Chitosan nanoparticles, produced by ionic gelation, are among the most intensely studied nanosystems for drug delivery. However, a lack of inter-laboratory reproducibility and a poor physicochemical understanding of the process of particle formation have been slowing their potential market applications. To address these shortcomings, the current study presents a systematic analysis of the main polymer factors affecting the nanoparticle formation driven by an initial screening using systematic statistical Design of Experiments (DoE). In summary, we found that for a given chitosan to TPP molar ratio, the average hydrodynamic diameter of the particles formed is strongly dependent on the initial chitosan concentration. The degree of acetylation of the chitosan was found to be the second most important factor involved in the system's ability to form particles. Interestingly, viscosimetry studies indicated that the particle formation and the average hydrodynamic diameter of the particles formed were highly dependent on the presence or absence of salts in the medium. In conclusion, we found that by controlling two simple factors of the polymer solution, namely its initial concentration and its solvent environment, it is feasible to control in a reproducible manner the production and characteristics of chitosan particles ranging in size from nano- to micrometres

    Mantle Pb paradoxes : the sulfide solution

    Get PDF
    Author Posting. © Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 152 (2006): 295-308, doi:10.1007/s00410-006-0108-1.There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt ‘wets’ sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: 1). advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus ‘sampling’ Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent ‘de-coupling’ of these systems.Our intemperance should not be blamed on the support we gratefully acknowledge from NSF: EAR- 0125917 to SRH and OCE-0118198 to GAG

    Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    Get PDF
    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated

    Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomised controlled trial

    Get PDF
    Background Third-generation aromatase inhibitors are more effective than tamoxifen for preventing recurrence in postmenopausal women with hormone-receptor-positive invasive breast cancer. However, it is not known whether anastrozole is more effective than tamoxifen for women with hormone-receptor-positive ductal carcinoma in situ (DCIS). Here, we compare the efficacy of anastrozole with that of tamoxifen in postmenopausal women with hormone-receptor-positive DCIS. Methods In a double-blind, multicentre, randomised placebo-controlled trial, we recruited women who had been diagnosed with locally excised, hormone-receptor-positive DCIS. Eligible women were randomly assigned in a 1:1 ratio by central computer allocation to receive 1 mg oral anastrozole or 20 mg oral tamoxifen every day for 5 years. Randomisation was stratified by major centre or hub and was done in blocks (six, eight, or ten). All trial personnel, participants, and clinicians were masked to treatment allocation and only the trial statistician had access to treatment allocation. The primary endpoint was all recurrence, including recurrent DCIS and new contralateral tumours. All analyses were done on a modified intention-to-treat basis (in all women who were randomised and did not revoke consent for their data to be included) and proportional hazard models were used to compute hazard ratios and corresponding confidence intervals. This trial is registered at the ISRCTN registry, number ISRCTN37546358. Results Between March 3, 2003, and Feb 8, 2012, we enrolled 2980 postmenopausal women from 236 centres in 14 countries and randomly assigned them to receive anastrozole (1449 analysed) or tamoxifen (1489 analysed). Median follow-up was 7·2 years (IQR 5·6–8·9), and 144 breast cancer recurrences were recorded. We noted no statistically significant difference in overall recurrence (67 recurrences for anastrozole vs 77 for tamoxifen; HR 0·89 [95% CI 0·64–1·23]). The non-inferiority of anastrozole was established (upper 95% CI <1·25), but its superiority to tamoxifen was not (p=0·49). A total of 69 deaths were recorded (33 for anastrozole vs 36 for tamoxifen; HR 0·93 [95% CI 0·58–1·50], p=0·78), and no specific cause was more common in one group than the other. The number of women reporting any adverse event was similar between anastrozole (1323 women, 91%) and tamoxifen (1379 women, 93%); the side-effect profiles of the two drugs differed, with more fractures, musculoskeletal events, hypercholesterolaemia, and strokes with anastrozole and more muscle spasm, gynaecological cancers and symptoms, vasomotor symptoms, and deep vein thromboses with tamoxifen. Conclusions No clear efficacy differences were seen between the two treatments. Anastrozole offers another treatment option for postmenopausal women with hormone-receptor-positive DCIS, which may be be more appropriate for some women with contraindications for tamoxifen. Longer follow-up will be necessary to fully evaluate treatment differences

    Cholera- and Anthrax-Like Toxins Are among Several New ADP-Ribosyltransferases

    Get PDF
    Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences – including a primary sequence pattern – to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data – and we need high-throughput validation – our approach provides insight into the newest toxin ADP-ribosyltransferases

    Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): A double-blind, randomised controlled trial

    Get PDF

    Big data for bipolar disorder

    Get PDF
    corecore