646 research outputs found

    Renovating on Unequal Premises: A Normative Framework for a Just Renovation Wave in Swedish Multifamily Housing

    Get PDF
    While the energy transition of the EU housing stock is now being intensified with the launch of the Renovation Wave, economic inequalities are increasing in many OECD countries, which has effects on housing-related inequalities and the demand of affordable housing. The Renovation Wave is thus an opportunity to improve housing quality for low-income households, but also entails risks for increased rents. In Sweden, the standard of housing is relatively high and energy poverty in multifamily housing is rare, meaning that there are limited social benefits to be achieved from extensive energy retrofitting; moreover, Sweden lacks a social housing sector, which limits protection of the worst-off residents. This paper thus explores whether the limited social benefits of the Renovation Wave weigh up against the risks that it entails for the worst-off in the Swedish context. This is done within a normative framework for just energy transitioning that is developed within the context of the Renovation Wave and increasing economic inequalities, consisting of four ordered principles: (1) The equal treatment principle; (2) The priority principle; (3) The efficiency principle; and (4) The principle of procedural fairness. Analysis showed that to be considered just according to our framework, the Swedish energy transition of housing should, in contradistinction to what is suggested in the Renovation Wave, limit the imposition of extensive energy retrofitting in low-income areas. Finally, having identified a mismatch between the most effective approaches in terms of energy savings and the most acceptable approaches in terms of social justice, we offer policy recommendations on how to bridge this mismatch in a Swedish context

    The promise of microarrays in the management and treatment of breast cancer

    Get PDF
    Breast cancer is the most common malignancy afflicting women from Western cultures. Developments in breast cancer molecular and cellular biology research have brought us closer to understanding the genetic basis of this disease. Recent advances in microarray technology hold the promise of further increasing our understanding of the complexity and heterogeneity of this disease, and providing new avenues for the prognostication and prediction of breast cancer outcomes. These new technologies have some limitations and have yet to be incorporated into clinical use, for both the diagnosis and treatment of women with breast cancer. The most recent application of microarray genomic technologies to studying breast cancer is the focus of this review

    A Fall and Near-Fall Assessment and Evaluation System

    Get PDF
    The FANFARE (Falls And Near Falls Assessment Research and Evaluation) project has developed a system to fulfill the need for a wearable device to collect data for fall and near-falls analysis. The system consists of a computer and a wireless sensor network to measure, display, and store fall related parameters such as postural activities and heart rate variability. Ease of use and low power are considered in the design. The system was built and tested successfully. Different machine learning algorithms were applied to the stored data for fall and near-fall evaluation. Results indicate that the Naïve Bayes algorithm is the best choice, due to its fast model building and high accuracy in fall detection

    Occupational exposure to gases/fumes and mineral dust affect DNA methylation levels of genes regulating expression

    Get PDF
    Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2x)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted

    Tissue-specific transcriptional imprinting and heterogeneity in human innate lymphoid cells revealed by full-length single-cell RNA-sequencing

    Get PDF
    The impact of the microenvironment on innate lymphoid cell (ILC)-mediated immunity in humans remains largely unknown. Here we used full-length Smart-seq2 single-cell RNA-sequencing to unravel tissue-specific transcriptional profiles and heterogeneity of CD127+ ILCs across four human tissues. Correlation analysis identified gene modules characterizing the migratory properties of tonsil and blood ILCs, and signatures of tissue-residency, activation and modified metabolism in colon and lung ILCs. Trajectory analysis revealed potential differentiation pathways from circulating and tissue-resident na\uefve ILCs to a spectrum of mature ILC subsets. In the lung we identified both CRTH2+ and CRTH2− ILC2 with lung-specific signatures, which could be recapitulated by alarmin-exposure of circulating ILC2. Finally, we describe unique TCR-V(D)J-rearrangement patterns of blood ILC1-like cells, revealing a subset of potentially immature ILCs with TCR-δ rearrangement. Our study provides a useful resource for in-depth understanding of ILC-mediated immunity in humans, with implications for disease

    Implementing nursing best practice guidelines: Impact on patient referrals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although referring patients to community services is important for optimum continuity of care, referrals between hospital and community sectors are often problematic. Nurses are well positioned to inform patients about referral resources. The objective of this study is to describe the impact of implementing six nursing best practice guidelines (BPGs) on nurses' familiarity with patient referral resources and referral practices.</p> <p>Methods</p> <p>A prospective before and after design was used. For each BPG topic, referral resources were identified. Information about these resources was presented at education sessions for nurses. Pre- and post-questionnaires were completed by a random sample of 257 nurses at 7 hospitals, 2 home visiting nursing services and 1 public health unit. Average response rates for pre- and post-implementation questionnaires were 71% and 54.2%, respectively. Chart audits were completed for three BPGs (n = 421 pre- and 332 post-implementation). Post-hospital discharge patient interviews were conducted for four BPGs (n = 152 pre- and 124 post-implementation).</p> <p>Results</p> <p>There were statistically significant increases in nurses' familiarity with resources for all BPGs, and self-reported referrals to specific services for three guidelines. Higher rates of referrals were observed for services that were part of the organization where the nurses worked. There was almost a complete lack of referrals to Internet sources. No significant differences between pre- and post-implementation referrals rates were observed in the chart documentation or in patients' reports of referrals.</p> <p>Conclusion</p> <p>Implementing nursing BPGs, which included recommendations on patient referrals produced mixed results. Nurses' familiarity with referral resources does not necessarily change their referral practices. Nurses can play a vital role in initiating and supporting appropriate patient referrals. BPGs should include specific recommendations on effective referral processes and this information should be tailored to the community setting where implementation is taking place.</p

    Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    Get PDF
    INTRODUCTION: Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. METHODS: We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. RESULTS: Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. CONCLUSION: Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers
    corecore