24 research outputs found

    The rediscovery of Strix butleri (Hume, 1878) in Oman and Iran, with molecular resolution of the identity of Strix omanensis Robb, van den Berg and Constantine, 2013

    Get PDF
    Background: Many species of owls (Strigidae) represent cryptic species and their taxonomic study is in flux. In recent years, two new species of owls of the genus Strix have been described from the Middle East by different research teams. It has been suggested that one of these species, S. omanensis, is not a valid species but taxonomic comparisons have been hampered by the lack of voucher specimens of S. omanensis, and the poor state of the holotype of S. butleri. Methods: Here we use new DNA sequence data to clarify the taxonomy and nomenclature of the S. butleri complex. We also report the capture of a single S. butleri sensu stricto in Mashhad, Iran. Results: A cytochrome b sequence of S. omanensis was found to be identical to that of the holotype of S. butleri, indicating that the name S. omanensis is best regarded as a junior synonym of S. butleri. The identity of the S. butleri captured in Mashhad, Iran, was confirmed using DNA sequence data. This represents a major (1300 km) range extension of this species. Conclusions: The population discovered in Oman in 2013 and originally named 'S. omanensis' actually represents the rediscovery of S. butleri, which was known from a single specimen and had not been recorded since 1878. The range of S. butleri extends into northeast Iran. Our study augments the body of evidence for the recognition of S. butleri and S. hadorami as separate species and highlights the importance of using multiple evidence to study cryptic owl species

    Inhibition of COX 1 and 2 prior to Renal Ischemia/Reperfusion Injury Decreases the Development of Fibrosis

    Get PDF
    Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients. Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX 1 and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX 1 and 2 in the development of fibrosis by performing a COX 1 and 2 blockade immediately before IRI. We subjected C57Bl/6 male mice to 60 min of unilateral renal pedicle occlusion. Prior to surgery mice were either treated with indomethacin (IMT) at days –1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription–polymerase chain reaction for expression of transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-10, heme oxygenase 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen I, and bone morphogenic protein 7 (BMP-7). To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle. Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-β, MCP-1, TNF-α, IL-1-β, vimentin, collagen I, CTGF, and IL-10 mRNA (all P < 0.05). Moreover, HO-1 mRNA was increased in animals pretreated with IMT (P < 0.05). Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did not reach statistical significance when compared with control expression levels. The blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response
    corecore