56 research outputs found

    Seasonal controls on deposition of Late Devensian glaciolacustrine sediments, Central ireland: Implications for the construction of a varve chronology for the British-Irish ice sheet

    Get PDF
    Laminated pro-glacial glaciolacustrine sediments dating from the Late Devensian (22-10,000 bp) from central Ireland were examined using a combination of detailed logging and scanning electron microscope surface texture and fabric analyses. The sediments are rhythmically laminated and consist of coarser, pale silt layers which alternate with darker clay layers containing occasional thin laminae of fine sand and coarse silt. The pale silt layers contain grains with surface textures indicative of a combination of fluvial, glacial and aeolian transport and contain single or multiple normally graded laminae, erosional surfaces and soft sediment deformation structures, indicating deposition from multiple high density underflows, with occasional dumping of wind-blown sediment into the lake. The dark clay layers have sharp upper and lower contacts and an internal fabric consistent with deposition from a combination of flocculation and grain-by-grain deposition. The thin laminae of coarser material have surface textures consistent with subglacial and fluvial transport only and are interpreted as underflows from subglacial discharges. The sediments are interpreted as annually laminated (varved)

    Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard

    Get PDF
    The diversity of highly active bacterial communities in cryoconite holes on three Arctic glaciers in Svalbard was investigated using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA locus. Construction and sequencing of clone libraries allowed several members of these communities to be identified, with Proteobacteria being the dominant one, followed by Cyanobacteria and Bacteroidetes. T-RFLP data revealed significantly different communities in holes on the (cold) valley glacier Austre Brøggerbreen relative to two adjacent (polythermal) valley glaciers, Midtre Lovénbreen and Vestre Brøggerbreen. These population compositions correlate with differences in organic matter content, temperature and the metabolic activity of microbial communities concerned. No within-glacier spatial patterns were observed in the communities identified over the 2-year period and with the 1 km-spaced sampling. We infer that surface hydrology is an important factor in the development of cryoconite bacterial communities

    Tonian-Cryogenian boundary sections of Argyll, Scotland

    Get PDF
    The Tonian-Cryogenian System boundary is to be defined at a GSSP (Global Boundary Stratigraphic Section and Point) beneath the first evidence of widespread glaciation. A candidate lies within the Dalradian Supergroup of Scotland and Ireland, which is least deformed and metamorphosed in Argyll, western Scotland. We present new stratigraphic profiles and interpretations from the Isle of Islay and the Garvellach Islands, update the chemostratigraphy of the Appin Group Tonian carbonates underlying the thick (ca. 1. km) glacigenic Port Askaig Formation (PAF) and demonstrate an environmental transition at the contact.The Appin Group forms a regionally extensive, > 4km-thick, succession of limestones, shales and sandstones deposited on a marine shelf. On Islay, the upper part of the lithostratigraphy has been clarified by measuring and correlating two sections containing distinctive stratigraphic levels including molar tooth structure, oolite, stromatolitic dolomite and intraclastic microbial mounds. Significantly deeper erosion at the unconformity at the base of the overlying PAF is demonstrated in the southern section. Carbonate facies show a gradual decline in δ 13 C VPDB from +5 to +2‰ upwards.In NE Garbh Eileach (Garvellach Islands), a continuously exposed section of Appin Group carbonates, 70m thick, here designated the Garbh Eileach Formation (GEF), lies conformably beneath the PAF. The GEF and the GEF-PAF boundary relationships are re-described with new sedimentological logs, petrological and stable isotope data. Interstratified limestone and dolomicrosparite with δ 13 C of -4 to -7‰ (a feature named the Garvellach anomaly, replacing the term Islay anomaly) are overlain by dolomite in which the isotope signature becomes weakly positive (up to +1‰) upwards. Shallow subtidal conditions become peritidal upwards, with evidence of wave and storm activity. Gypsum pseudomorphs and subaerial exposure surfaces are common near the top of the GEF. The basal diamictite (D1) of the PAF is rich in carbonate clasts similar to slightly deeper-water parts of the underlying succession. D1 is typically several metres thick with interstratified sandstone and conglomerate, but dies out laterally. Scattered siliciclastic coarse sandstone to pebble conglomerate with dropstones associated with soft-sediment deformation is interbedded with carbonate below and above D1. Dolomite beds with derived intraclasts and gypsum pseudomorphs are found above D1 (or equivalent position, where D1 is absent).Published and new Sr isotope studies, including successive leach data, demonstrate primary Tonian 87 Sr/ 86 Sr values of 0.7066-0.7069 on Islay, decreasing to 0.7064-0.7066 in the younger GEF limestones on the Garvellachs, with 1700-2700ppmSr. Other typically Tonian characteristics of the carbonates are the Sr-rich nature of limestones, molar tooth structure, and dolomitized peritidal facies with evidence of aridity. Seabed surveys suggesting uniformly-dipping strata and shallow borehole core material illustrate the potential for extending the Tonian record offshore of the Garvellachs.A candidate Tonian-Cryogenian GSSP is proposed on Garbh Eileach within the smooth δ 13 C profile at the cross-over to positive δ 13 C signatures, 4m below the first occurrence of ice-rafted sediment and 9m below the first diamictite. Although lacking radiometric constraints or stratigraphically significant biotas or biomarkers, the Scottish succession has a thick and relatively complete sedimentary record of glaciation, coherent carbon and strontium chemostratigraphy, lateral continuity of outcrops and 100% exposure at the proposed boundary interval

    Anatomy of terminal moraine segments and implied lake stability on Ngozumpa Glacier, Nepal, from electrical resistivity tomography (ERT)

    Get PDF
    This research was supported financially by the European Commission FP7-MC-IEF (PIEF-GA-2012-330805), the University Centre in Svalbard (UNIS), National Geographic Society GRANT #W135-10.Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100-15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk.Publisher PDFPeer reviewe

    Relative sea-level rise around East Antarctica during Oligocene glaciation

    Get PDF
    During the middle and late Eocene (∼48-34 Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarcticainduced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rosedespite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an icesheet grounding line

    Cenozoic landscape evolution of an East Antarctic oasis (Radok Lake area, northern Prince Charles Mountains), and its implications for the glacial and climatic history of Antarctica.

    No full text
    Ice-free areas Antarctica reveal a multi-million year history of landscape evolution, but most attention up to now has focused on the Transantarctic Mountains. The Amery Oasis in the northern Prince Charles Mountains borders the Lambert Glacier-Amery Ice Shelf System that drains 1 million km(2) of the East Antarctic Ice Sheet, and therefore provides a record of fluctuations of both local and regional ice since the ice sheet first formed in early Oligocene time. This glacial record has been deciphered by (i) geomorphological mapping from aerial photographs and on the ground, (ii) documenting the relationship between thick well-dated, uplifted glaciomarine strata and the underlying palaeolandscape, (iii) examining surficial sediment facies, and (iv) surface-exposure dating using Be-10 and Al-26. The SE Amery Oasis records at least 10 million years of landscape evolution beginning with a pre-late Miocene phase of glacial erosion, followed by deposition of glaciomarine strata of the Battye Glacier Formation (Pagodroma Group) in late Miocene time. A wet-based ice sheet next expanded over the SE Amery Oasis, following which deposition of the glaciomarine Pliocene Bardin Bluffs Formation (Pagodroma Group) took place. Both formations were uplifted;, by at least 500 and 200m, respectively. Their tops are characterised by geomorphological surfaces upon which intensive periglacial activity took place. Higher-level bedrock areas were subjected to deep weathering and torformation. Early Pleistocene time was characterised by expansion of a cold-based ice sheet across the whole area, but it left little more than patches of sandy gravel and erratic blocks. Late Pleistocene expansion of local ice (the Battye Glacier) saw deposition of moraine-mound complexes on low ground around Radok Lake and ice-dammed lake phenomena. Subglacial drainage of the lake escaped to the east exhuming the sediment-filled gorges. Holocene landscape modification has been relatively superficial. Overall, the landscape of the Amery Oasis evolved primarily under the influence of wet-based (probably polythermal) glaciers in Miocene and Pliocene times, whereas the Quaternary Period was characterised mainly by cold-based glaciers that had comparatively little impact on the landscape. © 2007, Elsevier Ltd
    • …
    corecore