2,900 research outputs found

    Impact of Liver Inflammation on Bile Acid Side Chain Shortening and Amidation

    Get PDF
    Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4? (HNF4?) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7?-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4? levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile

    Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes

    Get PDF
    Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans

    Utility of a thematic network in primary health care: a controlled interventional study in a rural area

    Get PDF
    BACKGROUND: UniNet is an Internet-based thematic network for a virtual community of users (VCU). It supports a virtual multidisciplinary community for physicians, focused on the improvement of clinical practice. This is a study of the effects of a thematic network such as UniNet on primary care medicine in a rural area, specifically as a platform of communication between specialists at the hospital and doctors in the rural area. METHODS: In order to study the effects of a thematic network such as UniNet on primary care medicine in a rural area, we designed an interventional study that included a control group. The measurements included the number of patient displacements due to disease, number of patient hospital stays and the number of prescriptions of drugs of low therapeutic utility and generic drug prescriptions by doctors. These data were analysed and compared with those of the control center. RESULTS: Our study showed positive changes in medical practice, reflected in the improvement of the evaluated parameters in the rural health area where the interventional study was carried out, compared with the control area. We discuss the strengths and weaknesses of UniNet as a potential medium to improve the quality of medical care in rural areas. CONCLUSION: The rural doctors had an effective, useful, user-friendly and cheap source of medical information that may have contributed to the improvement observed in the medical quality indices

    ISG15 facilitates cellular antiviral response to dengue and west nile virus infection in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue virus (DENV) and West Nile virus (WNV), close siblings of the <it>Flaviviridae </it>family, are the causative agents of Dengue hemorraghic shock or West Nile meningoencephalitis respectively. Vaccines against these two flaviviruses are currently unavailable. Interferon- Stimulated Gene 15 (<it>ISG15</it>), encoding an ubiquitin-like protein, is significantly induced by type I interferons or viral infections. Its roles in viral infections, however, vary with viruses, being either anti- or pro-viral. The exact roles of ISG15 in DENV and WNV infections remain unknown. In the current study, we evaluated the relevancies of ISG15 to DENV and WNV infection of a mouse macrophage cell line RAW264.7.</p> <p>Findings</p> <p>Quantitative PCR showed that mouse <it>Isg15 </it>was dramatically induced in DENV or WNV- infected RAW264.7 cells compared with non-infected cells. <it>Isg15 </it>and two other Jak-Stat related genes, <it>Socs1 </it>and <it>Socs3</it>, were silenced using siRNA mediated RNA interference. The intracellular DENV and WNV loads, as determined by quantitative PCR, were significantly higher in <it>Isg15 </it>silenced cells than control cells. The expression levels of interferon beta 1 (<it>Ifnb1</it>) were increased significantly in <it>Isg15</it>, <it>Socs1 </it>or <it>Socs3 </it>siRNA treated cells. Further investigation indicated that protein modification by ISG15, so called ISGylation, was significantly enhanced in DENV-infected cells compared to that in non-infected cells.</p> <p>Conclusions</p> <p>These findings suggest that ISG15 plays an anti-DENV/WNV function via protein ISGylation.</p

    New physics searches at near detectors of neutrino oscillation experiments

    Full text link
    We systematically investigate the prospects of testing new physics with tau sensitive near detectors at neutrino oscillation facilities. For neutrino beams from pion decay, from the decay of radiative ions, as well as from the decays of muons in a storage ring at a neutrino factory, we discuss which effective operators can lead to new physics effects. Furthermore, we discuss the present bounds on such operators set by other experimental data currently available. For operators with two leptons and two quarks we present the first complete analysis including all relevant operators simultaneously and performing a Markov Chain Monte Carlo fit to the data. We find that these effects can induce tau neutrino appearance probabilities as large as O(10^{-4}), which are within reach of forthcoming experiments. We highlight to which kind of new physics a tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX

    Cyclodextrin/cellulose hydrogel with gallic acid to prevent wound infection

    Get PDF
    Cyclodextrin-based hydrogels have been described as suitable for the controlled-release of bioactive molecules to be used as wound dressing. These materials have major advantages, since they gather the hydrogel properties (high degree of swelling and easy manipulation) and the encapsulation ability of cyclodextrins. β-cyclodextrin (β) or hydroxypropyl-β-cyclodextrin (HPβ) was cross-linked (1,4-butanediol diglycidyl ether) with hydroxypropyl methylcellulose under mild conditions. The hydrogels were chemically characterized by swelling degree, FTIR, DSC and contact angle. The gallic acid loading and release was also analysed, as well the antibacterial activity and cytotoxicity of the polymeric networks. The hydrogels obtained were firm and transparent, with good swelling ability. The gel-HPβ had a surface more hydrophilic when compared with the gel-β. Nevertheless, both hydrogels were capable to incorporate gallic acid and sustain the release for 48 h. The antibacterial activity of gallic acid was maintained after its adsorption within the polymeric matrix, as well as, gallic acid effect on fibroblast proliferation. Therefore, gel-β and gel-HPβ conjugated with gallic acid were shown to be a viable option for antibacterial wound dressing.The authors thank the FCT Strategic Projects PEst-OE/EQB/LA0023/2013, PEst-C/CTM/UI0264/2011, the Project "BioHealth-Biotechnology and Bioengineering approaches to improve health quality'', Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional doNorte (ON.2-ONovoNorte), QREN, FEDER, and E. Pinho grant (SFRH/BD/62665/2009)

    Down Regulation of a Matrix Degrading Cysteine Protease Cathepsin L, by Acetaldehyde: Role of C/EBPα

    Get PDF
    BACKGROUND: The imbalance between extra cellular matrix (ECM) synthesis and degradation is critical aspect of various hepatic pathologies including alcohol induced liver fibrosis. This study was carried out to investigate the effect of acetaldehyde on expression of an extra cellular matrix degrading protease cathepsin L (CTSL) in HepG2 cells. METHODOLOGY AND RESULTS: We measured the enzymatic activity, protein and, mRNA levels of CTSL in acetaldehyde treated and untreated cells. The binding of CAAT enhancer binding protein α (C/EBP α) to CTSL promoter and its key role in the transcription from this promoter and conferring responsiveness to acetaldehyde was established by site directed mutagenesis, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assays and siRNA technology. Acetaldehyde treatment significantly decreased CTSL activity and protein levels in HepG2 cells. A similar decrease in the mRNA levels and promoter activity was also observed. This decrease by acetaldehyde was attributed to the fall in the liver enriched transcription factor C/EBP α levels and it's binding to the CTSL promoter. Mutagenesis of C/EBP α binding motifs revealed the key role of this factor in CTSL transcription as well as conferring responsiveness to acetaldehyde. The siRNA mediated silencing of the C/EBP α expression mimicked the effect of acetaldehyde on CTSL levels and its promoter activity. It also abolished the responsiveness of this promoter to acetaldehyde. CONCLUSION: Acetaldehyde down regulates the C/EBP α mediated CTSL expression in hepatic cell lines. The decreased expression of CTSL may at least in part contribute to ECM deposition in liver which is a hallmark of alcoholic liver fibrosis

    Multiple Processes Regulate Long-Term Population Dynamics of Sea Urchins on Mediterranean Rocky Reefs

    Get PDF
    We annually monitored the abundance and size structure of herbivorous sea urchin populations (Paracentrotus lividus and Arbacia lixula) inside and outside a marine reserve in the Northwestern Mediterranean on two distinct habitats (boulders and vertical walls) over a period of 20 years, with the aim of analyzing changes at different temporal scales in relation to biotic and abiotic drivers. P. lividus exhibited significant variability in density over time on boulder bottoms but not on vertical walls, and temporal trends were not significantly different between the protection levels. Differences in densities were caused primarily by variance in recruitment, which was less pronounced inside the MPA and was correlated with adult density, indicating density-dependent recruitment under high predation pressure, as well as some positive feedback mechanisms that may facilitate higher urchin abundances despite higher predator abundance. Populations within the reserve were less variable in abundance and did not exhibit the hyper-abundances observed outside the reserve, suggesting that predation effects maybe more subtle than simply lowering the numbers of urchins in reserves. A. lixula densities were an order of magnitude lower than P. lividus densities and varied within sites and over time on boulder bottoms but did not differ between protection levels. In December 2008, an exceptionally violent storm reduced sea urchin densities drastically (by 50% to 80%) on boulder substrates, resulting in the lowest values observed over the entire study period, which remained at that level for at least two years (up to the present). Our results also showed great variability in the biological and physical processes acting at different temporal scales. This study highlights the need for appropriate temporal scales for studies to fully understand ecosystem functioning, the concepts of which are fundamental to successful conservation and management

    Lbx2 regulates formation of myofibrils

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skeletal muscle differentiation requires assembly of contractile proteins into organized myofibrils. The <it>Drosophila ladybird homeobox </it>gene (<it>lad</it>) functions in founder cells of the segmental border muscle to promote myoblast fusion and muscle shaping. Tetrapods have two homologous genes (<it>Lbx</it>). Lbx1 functions in migration and/or proliferation of hypaxial myoblasts, whereas the function of Lbx2 is poorly understood.</p> <p>Results</p> <p>To elucidate the role of Lbx in vertebrate myogenesis, we examined Lbx function in zebrafish. Zebrafish <it>lbx2 </it>transcripts appear in newly formed paraxial mesoderm and become restricted to adaxial cells, precursors of slow muscle. Slow muscles lose <it>lbx2 </it>expression as they differentiate, while a subset of differentiating fast muscle cells transiently expresses <it>lbx2</it>. Fin and hyoid muscle express <it>lbx2 </it>later. In contrast, <it>lbx1b </it>expression first appears lateral to the somites at late segmentation stages and is later restricted to fin muscle. Morpholino knockdown of Lbx1b and Lbx2 suppresses hypaxial muscle development. Moreover, knockdown of Lbx2 results in malformation of muscle fibers and reduced fusion of fast precursors, although no obvious effects on induction or specification are observed. Expression of myofilament genes, including <it>actin </it>and <it>myosin</it>, requires the engrailed repressor domain of Lbx2.</p> <p>Conclusion</p> <p>Our results elucidate a new function of Lbx2 as a regulator of myofibril formation.</p

    Adipose Tissue Gene Expression of Factors Related to Lipid Processing in Obesity

    Get PDF
    BACKGROUND: Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). METHODS AND PRINCIPAL FINDINGS: VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS: Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons
    corecore