141 research outputs found

    Clinical Outcomes, Costs, and Cost-effectiveness of Strategies for Adults Experiencing Sheltered Homelessness During the COVID-19 Pandemic

    Get PDF
    Importance: Approximately 356 000 people stay in homeless shelters nightly in the United States. They have high risk of contracting coronavirus disease 2019 (COVID-19). / Objective: To assess the estimated clinical outcomes, costs, and cost-effectiveness associated with strategies for COVID-19 management among adults experiencing sheltered homelessness. / Design, Setting, and Participants: This decision analytic model used a simulated cohort of 2258 adults residing in homeless shelters in Boston, Massachusetts. Cohort characteristics and costs were adapted from Boston Health Care for the Homeless Program. Disease progression, transmission, and outcomes data were taken from published literature and national databases. Surging, growing, and slowing epidemics (effective reproduction numbers [Re], 2.6, 1.3, and 0.9, respectively) were examined. Costs were from a health care sector perspective, and the time horizon was 4 months, from April to August 2020. / Exposures: Daily symptom screening with polymerase chain reaction (PCR) testing of individuals with positive symptom screening results, universal PCR testing every 2 weeks, hospital-based COVID-19 care, alternative care sites (ACSs) for mild or moderate COVID-19, and temporary housing were each compared with no intervention. / Main Outcomes and Measures: Cumulative infections and hospital-days, costs to the health care sector (US dollars), and cost-effectiveness, as incremental cost per case of COVID-19 prevented. / Results: The simulated population of 2258 sheltered homeless adults had a mean (SD) age of 42.6 (9.04) years. Compared with no intervention, daily symptom screening with ACSs for pending tests or confirmed COVID-19 and mild or moderate disease was associated with 37% fewer infections (1954 vs 1239) and 46% lower costs (6.10millionvs6.10 million vs 3.27 million) at an Re of 2.6, 75% fewer infections (538 vs 137) and 72% lower costs (1.46millionvs1.46 million vs 0.41 million) at an Re of 1.3, and 51% fewer infections (174 vs 85) and 51% lower costs (0.54millionvs0.54 million vs 0.26 million) at an Re of 0.9. Adding PCR testing every 2 weeks was associated with a further decrease in infections; incremental cost per case prevented was 1000atanReof2.6,1000 at an Re of 2.6, 27 000 at an Re of 1.3, and 71 000atanReof0.9.TemporaryhousingwithPCRevery2weekswasmosteffectivebutsubstantiallymoreexpensivethanotheroptions.Comparedwithnointervention,temporaryhousingwithPCRevery2weekswasassociatedwith8171 000 at an Re of 0.9. Temporary housing with PCR every 2 weeks was most effective but substantially more expensive than other options. Compared with no intervention, temporary housing with PCR every 2 weeks was associated with 81% fewer infections (376) and 542% higher costs (39.12 million) at an Re of 2.6, 82% fewer infections (95) and 2568% higher costs (38.97million)atanReof1.3,and5938.97 million) at an Re of 1.3, and 59% fewer infections (71) and 7114% higher costs (38.94 million) at an Re of 0.9. Results were sensitive to cost and sensitivity of PCR and ACS efficacy in preventing transmission. / Conclusions and Relevance: In this modeling study of simulated adults living in homeless shelters, daily symptom screening and ACSs were associated with fewer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and decreased costs compared with no intervention. In a modeled surging epidemic, adding universal PCR testing every 2 weeks was associated with further decrease in SARS-CoV-2 infections at modest incremental cost and should be considered during future surges

    Analysis of Gene Expression in Resynthesized Brassica napus Allopolyploids Using Arabidopsis 70mer Oligo Microarrays

    Get PDF
    Background Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S5:6) alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. Methodology/Principal Findings We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S0:1 and S5:6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent) expression in the allopolyploids were tested. The S5:6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6–15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6–32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S0:1lines and 0.1–0.2% were nonadditive among all S5:6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S5:6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S0:1 lines. Conclusions/Significance Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization. Furthermore, our microarray analysis did not provide strong evidence that homoeologous rearrangements were a determinant of genome-wide nonadditive gene expression. In light of the inherent limitations of the Arabidopsis microarray to measure gene expression in polyploid Brassicas, further studies are warranted

    Extending the tephra and palaeoenvironmental record of the Central Mediterranean back to 430 ka: A new core from Fucino Basin, central Italy

    Get PDF
    Here we present the first tephrostratigraphic, palaeomagnetic, and multiproxy data from a new ∼98 m-deep sediment core retrieved from the Fucino Basin, central Italy, spanning the last ∼430 kyr. Palaeoenvironmental proxy data (Ca-XRF, gamma ray and magnetic susceptibility) show a cyclical variability related to interglacial-glacial cycles since the Marine Isotope Stage (MIS) 12-MIS 11 transition. More than 130 tephra layers are visible to the naked eye, 11 of which were analysed (glass-WDS) and successfully correlated to known eruptions and/or other equivalent tephra. In addition to tephra already recognised in the previously investigated cores spanning the last 190 kyr, we identified for the first time tephra from the eruptions of: Tufo Giallo di Sacrofano, Sabatini (288.0 ± 2.0 ka); Villa Senni, Colli Albani (367.5 ± 1.6 ka); Pozzolane Nere and its precursor, Colli Albani (405.0 ± 2.0 ka, and 407.1 ± 4.2 ka, respectively) and Castel Broco, Vulsini (419–490 ka). The latter occurs at the bottom of the core and has been 40Ar/39Ar dated at 424.3 ± 3.2 ka, thus providing a robust chronological constrain for both the eruption itself and the base of the investigated succession. Direct 40Ar/39Ar dating and tephra geochemical fingerprinting provide a preliminary radioisotopic-based chronological framework for the MIS 11-MIS 7 interval, which represent a foundation for the forthcoming multiproxy studies and for investigating the remaining ∼110 tephra layers that are recorded within this interval. Such future developments will contribute towards an improved MIS 11-MIS 7 Mediterranean tephrostratigraphy, which is still poorly explored and exploited

    Mitotic Illegitimate Recombination Is a Mechanism for Novel Changes in High-Molecular-Weight Glutenin Subunits in Wheat-Rye Hybrids

    Get PDF
    Wide hybrids can have novel traits or changed expression of a quantitative trait that their parents do not have. These phenomena have long been noticed, yet the mechanisms are poorly understood. High-molecular-weight glutenin subunits (HMW-GS) are seed storage proteins encoded by Glu-1 genes that only express in endosperm in wheat and its related species. Novel HMW-GS compositions have been observed in their hybrids. This research elucidated the molecular mechanisms by investigating the causative factors of novel HMW-GS changes in wheat-rye hybrids. HMW-GS compositions in the endosperm and their coding sequences in the leaves of F1 and F2 hybrids between wheat landrace Shinchunaga and rye landrace Qinling were investigated. Missing and/or additional novel HMW-GSs were observed in the endosperm of 0.5% of the 2078 F1 and 22% of 36 F2 hybrid seeds. The wildtype Glu-1Ax null allele was found to have 42 types of short repeat sequences of 3-60 bp long that appeared 2 to 100 times. It also has an in-frame stop codon in the central repetitive region. Analyzing cloned allele sequences of HMW-GS coding gene Glu-1 revealed that deletions involving the in-frame stop codon had happened, resulting in novel ∼1.8-kb Glu-1Ax alleles in some F1 and F2 plants. The cloned mutant Glu-1Ax alleles were expressed in Escherichia coli, and the HMW-GSs produced matched the novel HMW-GSs found in the hybrids. The differential changes between the endosperm and the plant of the same hybrids and the data of E. coli expression of the cloned deletion alleles both suggested that mitotic illegitimate recombination between two copies of a short repeat sequence had resulted in the deletions and thus the changed HMW-GS compositions. Our experiments have provided the first direct evidence to show that mitotic illegitimate recombination is a mechanism that produces novel phenotypes in wide hybrids

    Electrophysiological correlates of selective attention: A lifespan comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study how event-related brain potentials (ERPs) and underlying cortical mechanisms of selective attention change from childhood to old age, we investigated lifespan age differences in ERPs during an auditory oddball task in four age groups including 24 younger children (9–10 years), 28 older children (11–12 years), 31 younger adults (18–25), and 28 older adults (63–74 years). In the Unattend condition, participants were asked to simply listen to the tones. In the Attend condition, participants were asked to count the deviant stimuli. Five primary ERP components (N1, P2, N2, P3 and N3) were extracted for deviant stimuli under Attend conditions for lifespan comparison. Furthermore, Mismatch Negativity (MMN) and Late Discriminative Negativity (LDN) were computed as difference waves between deviant and standard tones, whereas Early and Late Processing Negativity (EPN and LPN) were calculated as difference waves between tones processed under Attend and Unattend conditions. These four secondary ERP-derived measures were taken as indicators for change detection (MMN and LDN) and selective attention (EPN and LPN), respectively. To examine lifespan age differences, the derived difference-wave components for attended (MMN and LDN) and deviant (EPN and LPN) stimuli were specifically compared across the four age groups.</p> <p>Results</p> <p>Both primary and secondary ERP components showed age-related differences in peak amplitude, peak latency, and topological distribution. The P2 amplitude was higher in adults compared to children, whereas N2 showed the opposite effect. P3 peak amplitude was higher in older children and younger adults than in older adults. The amplitudes of N3, LDN, and LPN were higher in older children compared with both of the adult groups. In addition, both P3 and N3 peak latencies were significantly longer in older than in younger adults. Interestingly, in the young adult sample P3 peak amplitude correlated positively and P3 peak latency correlated negatively with performance in the Identical Picture test, a marker measure of fluid intelligence.</p> <p>Conclusion</p> <p>The present findings suggest that patterns of event-related brain potentials are highly malleable within individuals and undergo profound reorganization from childhood to adulthood and old age.</p

    MENINGOENCEPHALITIS DUE TO VARICELLA ZOSTER VIRUS IN AIDS PATIENTS. REPORT OF ELEVEN CASES AND REVIEW OF THE LITERATURE

    Get PDF
    Neurological complications of varicella-zoster virus (VZV) are infrequent and include various clinical pictures. The reactivation of VZV in patients with AIDS is generally associated with an acute and severe meningoencephalitis. We report the epidemiological, clinical and virological data from 11 consecutive patients with diagnosis of HIV/AIDS and central nervous system (CNS) involvement due to VZV. All patients were male and seropositive for HIV. The primary risk factor for HIV infection was unprotected sexual contact. The median of CD4 T cell count was 142 cells/µL. All of them presented signs and symptoms of meningoencephalitis. Six patients (54.5%) presented pleocytosis; they all showed high CSF protein concentrations with a median of 2.1 g/dL. Polymerase chain reaction of cerebrospinal fluid specimen was positive for VZV in all of them and they were treated with intravenous acyclovir at doses of 30/mg/kg/day for 21 days. Overall survival was 63% (7 of 11 patients). The four dead patients had low cellular counts in CSF, below the median of this parameter. VZV should be included among the opportunistic pathogens that can involve CNS with a diffuse and severe meningoencephalitis in patients with advanced HIV/AIDS disease

    Rapid Chromosome Evolution in Recently Formed Polyploids in Tragopogon (Asteraceae)

    Get PDF
    Polyploidy, frequently termed "whole genome duplication", is a major force in the evolution of many eukaryotes. Indeed, most angiosperm species have undergone at least one round of polyploidy in their evolutionary history. Despite enormous progress in our understanding of many aspects of polyploidy, we essentially have no information about the role of chromosome divergence in the establishment of young polyploid populations. Here we investigate synthetic lines and natural populations of two recently and recurrently formed allotetraploids Tragopogon mirus and T. miscellus (formed within the past 80 years) to assess the role of aberrant meiosis in generating chromosomal/genomic diversity. That diversity is likely important in the formation, establishment and survival of polyploid populations and species.Applications of fluorescence in situ hybridisation (FISH) to natural populations of T. mirus and T. miscellus suggest that chromosomal rearrangements and other chromosomal changes are common in both allotetraploids. We detected extensive chromosomal polymorphism between individuals and populations, including (i) plants monosomic and trisomic for particular chromosomes (perhaps indicating compensatory trisomy), (ii) intergenomic translocations and (iii) variable sizes and expression patterns of individual ribosomal DNA (rDNA) loci. We even observed karyotypic variation among sibling plants. Significantly, translocations, chromosome loss, and meiotic irregularities, including quadrivalent formation, were observed in synthetic (S(0) and S(1) generations) polyploid lines. Our results not only provide a mechanism for chromosomal variation in natural populations, but also indicate that chromosomal changes occur rapidly following polyploidisation.These data shed new light on previous analyses of genome and transcriptome structures in de novo and establishing polyploid species. Crucially our results highlight the necessity of studying karyotypes in young (<150 years old) polyploid species and synthetic polyploids that resemble natural species. The data also provide insight into the mechanisms that perturb inheritance patterns of genetic markers in synthetic polyploids and populations of young natural polyploid species

    Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex

    Get PDF
    Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.UE FWF; P22260UE: Y66
    • …
    corecore