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Abstract 34	
Here we present the first tephrostratigraphic, palaeomagnetic, and multiproxy data from a new ~98 m-deep 35	
sediment core retrieved from the Fucino Basin, central Italy, spanning the last ~430 kyr. Palaeoenvironmental 36	
proxy data (Ca-XRF, gamma ray and magnetic susceptibility) show a cyclical variability related to interglacial-37	
glacial cycles since the Marine Isotope Stage (MIS) 12-MIS 11 transition. More than 130 tephra layers are 38	
visible to the naked eye, 11 of which were analysed (glass-WDS) and successfully correlated to known 39	
eruptions and/or other equivalent tephra. In addition to tephra already recognised in the previously investigated 40	
cores spanning the last 190 kyr, we identified for the first time tephra from the eruptions of: Tufo Giallo di 41	
Sacrofano, Sabatini (288.0 ± 2.0 ka); Villa Senni, Colli Albani (367.5 ± 1.6 ka); Pozzolane Nere and its 42	
precursor, Colli Albani (405.0 ± 2.0 ka, and 407.1 ± 4.2 ka, respectively); and Castel Broco, Vulsini (419-490 43	
ka). The latter occurs at the bottom of the core and has been 40Ar/39Ar dated at 424.3 ± 3.2 ka, thus providing 44	
a robust chronological constrain for both the eruption itself and the base of the investigated succession. Direct 45	
40Ar/39Ar dating and tephra geochemical fingerprinting provide a preliminary radioisotopic-based 46	
chronological framework for the MIS 11-MIS 7 interval, which represent a foundation for the forthcoming 47	
multiproxy studies and for investigating the remaining ~110 tephra layers that are recorded within this interval. 48	
Such future developments will be contribute towards an improved MIS 11-MIS 7 Mediterranean 49	
tephrostratigraphy, which is still poorly explored and exploited. 50	
 51	
 52	
 53	
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1. Introduction  54	
High-precision chronologies and reliable correlations of sedimentary records are fundamental requirements 55	
for reconstructing the Earth’s history and evaluating the role of the processes underlying its evolution. This is 56	
particularly true for palaeoenvironmental and palaeoclimatic studies dealing with Quaternary orbital and 57	
millennial-scale variability. Our understanding of the spatial-temporal variability, magnitude, regional 58	
expressions, and underlying mechanisms of the triggering, propagation, and sustaining of past climate change 59	
is dependent on high-quality and high-resolution proxy series, provided that they are anchored to precise and 60	
accurate time scales (e.g., Govin et al., 2015). The lack of robust chronologies also limits the use of data for 61	
testing climate models, which are fundamental for understanding the climate system and forecasting future 62	
change.  63	
Alongside the growing need of more accurate, precise, and high-resolution chronologies in sedimentary 64	
archives, the study of distal tephra has experienced an outstanding surge during the last decade (e.g., Lane et 65	
al., 2017). Diagnostic geochemical features of tephra components (e.g., glass, minerals) allow the 66	
unambiguous identification and tracking of tephra layers in different sedimentary settings, thus providing us 67	
with a unique tool to establish stratigraphic correlations between sedimentary archives (tephrostratigraphy) 68	
and to transfer radioisotopic ages of these layers (tephrochronology) over wide regions.  69	
The relevance of tephra studies is clearly highlighted in large international projects and working groups, such 70	
as RESET (RESponse of humans to abrupt Environmental Transitions; e.g., Lowe et al., 2015) and INTIMATE 71	
(INTegration of Ice core, MArine and TErrestrial records of the Last Termination; e.g., Blockley et al., 2014), 72	
which have drawn attention and prompted the development and application of tephrochronology. Furthermore, 73	
tephrochronology has also been shown to be vital in several of the recent continental (ICDP) deep drilling 74	
projects (e.g., PASADO, Wastegård et al., 2013; PALAEOVAN, Litt and Anselmetti, 2014; SCOPSCO, 75	
Leicher et al., 2016). In spite of these efforts a satisfactory and reliable tephra framework for the Mediterranean 76	
region is available only for the 200 kyr (Bourne et al., 2010; 2015; Giaccio et al., 2012b; 2017; Insinga et al., 77	
2014; Paterne et al., 2008; Petrosino et al., 2016; Smith et al., 2011; Sulpizio et al., 2010; Tamburrino et al., 78	
2012; Tomlinson et al., 2014; Wulf et al., 2004; 2012; Zanchetta et al., 2008; 2018). Extending the use of 79	
tephrochronology for extra-regional to global scale chronological purposes beyond the current relatively short 80	
temporal limits of the Upper Pleistocene has thus become an urgent need.  81	
Reliable tephrostratigraphies can be best achieved in regions characterised by: (i) intense and frequent 82	
Quaternary potassic-ultrapotassic explosive volcanism, that allow high-precision 40Ar/39Ar dating, and by (ii) 83	
the presence of nearby, long and continuous sedimentary archives that in addition to the recording of tephra 84	
provide detailed palaeoclimatic and palaeoenvironmental information. In the central Mediterranean region, the 85	
Plio-Quaternary lacustrine successions hosted in the Central-Southern Apennine intermountain tectonic 86	
depressions (e.g., Galadini et al., 2003) are among the few sedimentary archives that fulfil both these 87	
requirements. These archives record in detail the environmental and climatic history (e.g., Karner et al., 1999; 88	
Giaccio et al., 2015a; Mannella et al., 2019; Regattieri et al., 2015; 2016; 2017; 2019; Russo Ermolli et al. 89	
2015) and contain frequently deposited tephra layers from adjacent ultrapotassic peri-Tyrrhenian, high-90	
explosive volcanic centres that can be 40Ar/39Ar dated (e.g., Karner et al., 1999; Giaccio et al., 2012a; 2013b; 91	
2014; 2017; Amato et al., 2014; Petrosino et al., 2014b) (Fig. 1). Among these, the Fucino Basin, located in 92	
the centre of the Central Apennines (Fig. 1), is a key archive as first studies of its uppermost lacustrine 93	
succession (<190 ka) have demonstrated the potential for retrieving a long and continuous record of both past 94	
volcanic activity and environmental changes (Di Roberto et al., 2018; Giaccio et al., 2015b; Giaccio et al., 95	
2017; Mannella et al., 2019). 96	
In June 2017, a new scientific drilling campaign was conducted with the aim of extending the available Fucino 97	
record back in time and of exploring its actual potential, in terms of sedimentary continuity and wealth of both 98	
tephra and palaeoclimatic proxy data. Here we present the first results of ongoing studies on the new F4-F5 99	
core (Fig. 1) and provide a preliminary chronological and palaeoenvironmental framework for the forthcoming 100	
high-resolution, multiproxy investigations. 101	
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 102	
2. Geological, structural and stratigraphic setting of the Fucino Basin 103	
The Fucino Basin (coordinates of the basin’s midpoint: 42° 00’ 00” N; 13° 30’ 00” E) is located at ~650 m 104	
a.s.l and is surrounded by some of the highest peaks of the Central Apennine, which hosted mountain glaciers 105	
during glacial periods (e.g., Giraudi and Giaccio, 2015). Until recently, the Fucino Basin hosted Lake Fucinus, 106	
which covered a surface area of 150 km2 prior to its partial drainage during the 1st-2nd century AD, which was 107	
completed at the end of the 19th century.  108	
The basin is bounded to the ENE by normal faults of the Fucino Fault System (FFS; Galadini and Galli, 2000). 109	
The FFS is the main, currently active, tectonic structure responsible for the Plio-Pleistocene opening and 110	
evolution of the Fucino Basin (Cavinato et al., 2002), as well as for generating high magnitude (Mw 7.0) 111	
historical earthquakes (Galli et al., 2016). Longitudinal and transverse seismic lines crossing the basin with 112	
respect to the NW-SE strike of the FFS, depict a semi-graben geometry with increasing thickness of the 113	
sedimentary infill from the west to the east (i.e., toward the FFS) and from the north-western and south-western 114	
tips of the FFS to its main depocenter, located a few km N-W of San Benedetto village (Fig. 1). Specifically, 115	
Cavinato et al. (2002) distinguished four unconformity-bounded units: Seq. 1, Meso-Cenozoic substratum, 116	
Seq. 2, Messinian, Seq. 3 Pliocene, and Seq. 4, Quaternary, separated by major unconformities A, B, and C, 117	
respectively (Fig. 1). The EW-trending seismic Line 1, crossing the depocenter of the basin, shows that 118	
Quaternary sediments, which here reach a maximum thickness of ~ 700 m, have not been significantly affected 119	
by tectonic deformation or sedimentary unconformities (Cavinato et al., 2002) (Fig. 1). During the past 120	
decades, several cores were drilled in the Fucino semi-graben basin for scientific and geotechnical purposes. 121	
So far, the 200 m-long GeoLazio core is the deepest borehole in the Fucino plain (GL in Fig. 1), but only very 122	
few data is available on its geochronological and stratigraphical aspects (Follieri et al., 1986; 1991; Giaccio et 123	

al., 2015b).	124	
 125	
3. Material and methods 126	
3.1. Drilling site selection strategy and procedure 127	
The general semi-graben architecture of the Fucino Basin (Line 1, Fig. 1) was taken into account when 128	
selecting a new drilling site characterized by a lower sedimentation rate with respect to F1-F3 (~0.45 mm/yr 129	
in average, Giaccio et al., 2017; Mannella et al., 2019), i.e., potentially yielding older sediments to a relatively 130	
shallow depth. The respective site was located ~1 km east of the F1-F3 site (42°00’07”N, 13°32’19”E), in 131	
between the GeoLazio and SP cores (Fig. 1), both characterized by mean sedimentation rate of ca. 0.2 mm/yr 132	
(Giaccio et al., 2015b; 2017). In order to recover a sedimentary succession as complete as possible, two parallel 133	
cores were recovered at the same drilling site in two boreholes, F4 and F5, ca. 3 m apart. The first hole (F4) 134	
reached a field depth of 87.00 m and the second hole (F5) a depth of 87.75 m. Individual core sections had a 135	
length of 1.5 m, and both holes were drilled with an overlap of 75 cm between the respective runs, thus ensuring 136	
that any possible gap in-between two consecutive core sections of the F4 core series was likely recovered in 137	
the middle of core section of the F5 core series, and vice versa (Fig. 2). Samples from core catchers were taken 138	
directly in the field, whereas the rest of the core was stored in a dark and cool place for further analyses. 139	
 140	
3.2. Downhole logging  141	
Geophysical downhole logging data including natural gamma radiation (spectral gamma ray), magnetic 142	
susceptibility, resistivity, temperature, acoustic velocity, acoustic borehole televiewer, and borehole diameter 143	
and dip (borehole and strata) were measured in hole F4. Spectral gamma ray was logged first through the drill 144	
pipe and is the depth reference for all following runs. All other runs were performed under open hole condition. 145	
For that, the drill pipe was tripped out up to 67 m before logging the above-mentioned parameters separately. 146	
After finishing the logging of the interval ~80 m to 67 m, the drill pipe was pulled out to 1.5 m and the upper 147	
section was logged.  148	
 149	
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3.3. Core processing, XRF scanning and composite F4-F5 record 150	
Sediment cores were split lengthwise and their lithology described at the Institute of Geology and Mineralogy 151	
of the University of Cologne (Germany). Immediately after core opening, one of the core halves was scanned 152	
for high-resolution images with a line-scan camera mounted on an ITRAX X-ray fluorescence (XRF) scanner 153	
(Cox Analytical Systems, Sweden). XRF scans on split core halves were made using a chromium tube set at 154	
55 kV and 30 mA with a dwell time of 10 s and a step-size of 2.5 mm. Data processing was performed with 155	
the QSpec 6.5 software (Cox Analytical, Sweden) and data are expressed in counts per second, averaged at 25 156	
cm intervals. Optical information derived from high-resolution line-scan imaging and XRF data were used for 157	
correlating the individual, overlapping core segments from sites F4 and F5 to create a composite core (Fig. 2). 158	
Among homologous stratigraphic intervals documented in both F4 and F5 cores, we systematically selected 159	
the more expanded one, which results in a total length of F4-F5 composite core that exceeds the depth of the 160	
individual boreholes. Sections that were obviously disturbed by the coring process were excluded from the 161	
core composite or marked as not relevant for high-resolution analyses. If unambiguous core correlation was 162	
not possible due to non-overlapping sections or larger disturbed sections, the field depth of the cores and the 163	
length of the core catcher were taken as measures to continue the core composition downward. The length of 164	
the resulting core composite, 98.11 m composite depth (mcd), exceeds the drilling field depth by 10.36 m, 165	
which is partly due to core expansion and degassing after core recovery and to the difference in the thickness 166	
of homologous stratigraphic intervals documented in the F4 and F5 core sections selected for the composite 167	
F4-F5 core. 168	
 169	
3.4. Palaeomagnetic analyses 170	
For palaeomagnetic analyses the natural remanent magnetisation (NRM) of the core halves was measured 171	
consecutively in 1 cm spacing by a cryogenic magnetometer (760 SRM-RF-SQUID; 2G Enterprise, USA) 172	
with an embedded alternating field demagnetizer at the  palaeomagnetic laboratory Grubenhagen of the Leibniz 173	
Institute for Applied Geophysics (LIAG; Hannover, Germany). Subsequent progressive alternating field (AF) 174	
demagnetization in four equally sized steps up to 16 mT. These measurements allow for a first evaluation of 175	
the quality of the magnetic signal. The inclination values measured after the 16 mT demagnetisation step were 176	
used to show downcore variations of the direction of the  palaeomagnetic field. The inclination data of core 177	
sections showing drilling induced disturbances were excluded from the interpretation, as well as the suspicious 178	
values gained from the top and the bottom of drill core segments. Since core measurements integrate the signal 179	
over approximately 12 cm, drilling induced disturbances influence the data of not affected core sections. 180	
Thereby, data gaps exceed the actual disturbed sections of the core. The magnetic susceptibility (MS) of the 181	
core halves was determined in 1 cm spacing using a 14 cm loop sensor and a VSFM control unite by Magnon 182	
GmbH (Dassel, Germany).  183	
 184	
3.5. Tephrochronological analyses  185	
3.5.1. Tephrostratigraphy and major element composition  186	
Major and minor oxide element compositions were determined on micro-pumice fragments and/or glass shards 187	
of eleven selected tephra layers (Table 1) distributed along the F4-F5 succession as shown in Figure 2c. The 188	
individual layers were labelled using an alphanumeric code that identified the hole (i.e., F4 or F5), the 189	
progressive number of the section core (from 1 to 58) and the depth in cm of the top and bottom of the layer 190	
in the ~150 cm-long core section (see second column in Table 1). Then, labels were simplified using the 191	
criterion previously proposed for the F1-F3 core (Giaccio et al., 2017), i.e., the tephra have been labelled as 192	
Tephra Fucino (TF) followed by a sequential number indicating the relative stratigraphic position of each 193	
tephra, with TF-1 being the uppermost layer (Table 1).  194	
 195	
 196	
 197	
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Table 1: Analysed tephra layers from core F4-F5.  198	
Fucino 
tephra 

 Sampling 
code 

 Bottom 
mcd  

 Thickness 
(cm) 

 Main lithological features  Source  
      

TF-4  F5-8  
77-93  10.57  15.50  

Darkish coarse ash made of dense blackish porphyritic scoria including 
crystals of leucite, pyroxene and dark mica, also occurring as abundant 
loose clasts. Accessory lithic made of lava and holocrystalline clasts also 
occur. 

 
Colli 

Albani 

 

TF-5  F5-8  
148-154  11.13  ~6*  

Darkish coarse ash made of dense blackish porphyritic scoria including 
crystals of leucite, pyroxene and dark mica, also occurring as abundant lose 
clasts. Accessory lithic made of lava and holocrystalline clast also occur. 

 
Colli 

Albani 

 

TF-7  F5-10  
147-149  14.14  2.00  

Greyish medium ash made of whitish-transparent micro-pumices associated 
with dense brownish glass shards with abundant lose crystals of large 
sanidine and black mica.  

 
Ischia 

 

TF-8  F5-12  
90-95  17.15  4.50  

Darkish ash made of blackish poorly vesicular scoria associated to scarce 
crystals of leucite and clinopyroxene.  

 Colli 
Albani 

 

TF-12  F5-15  
90-91  21.53  1.00  

Greyish to dark yellow, fine grained ash with whitish-transparent 
micropumices and glass shards. Stretched/elongated vesicles, only very few 
loose crystals of sanidine, black mica and pyroxene. 

 Campi 
Flegrei-

CVZ 

 

TF-17  F5-20  
89-91  29.64  2.00  

Fine to coarse grained, greyish ash with 1) greyish dark vesicular scoria; 2) 
brownish and transparent glass shards and micropumice; 3) coarse, 
(rounded) whitish and greyish pumice, with loose sanidine, clinopyroxene, 
and amphibole crystals 

 
Campi 

Flegrei-
CVZ 

 

TF-62  F4-39  
90-100  60,60  10.00  

Darkish coarse ash consisting of 1) greyish dark vesicular scoria; 2) 
brownish and transparent glass shards and micropumice; 3) coarse, 
(rounded) whitish and greyish pumice, with loose sanidine, clinopyroxene, 
and amphibole crystals. 

 

Sabatini 

 

TF-85  F5-49  
74-88  80.52  13.25  

Darkish medium-coarse ash made of both black porphyritic leucite-bearing 
scoriae and aphyric highly vesicular black scoriae, along with abundant 
crystals of leucite and dark mica and lithics. Toward the top, the ash 
becomes finer.  

 
Colli 

Albani 

 

TF-
117  F5-57  

0-7  95.13  7.00  

Darkish fine ash made of black porphyritic leucite-bearing scoriae 
associated with free crystals of leucite and lithics. Toward the top, the 
sediment evolves into a coarse ash made of blackish vesicular porphyritic 
scoriae along with leucite and lithics. 

 
Colli 

Albani 

 

TF-
118  F5-57  

16-23  95.29  7.50  
Darkish fine ash made of black porphyritic scoriae along with abundant 
free crystals of leucite and minor lithics. 

 Colli 
Albani 

 

TF-
126  F5-58 64-

66  97.24  2.00  

Light-grey medium ash made of highly vesicular white pumices associated 
with crystals of sanidine, plagioclase, dark mica and opaques and glass 
shards and minor lithics. Toward the top, the sediment turns to a dark grey-
blackish medium ash. 

 

Vulsini 

 

*Base of tephra inside of the core-catcher, not in composite depth.  199	
 200	
In addition, in order to improve the available reference datasets for robust geochemical comparisons and for 201	
identifying the volcanic source of the Fucino tephra layers, we are performing new glass chemical analyses of 202	
the main proximal volcanic units of Latium and Roccamonfina volcanoes, which are the main sources of the 203	
Fucino Middle Pleistocene tephra. Specifically, based on the estimated ages of the F4-F5 tephras investigated 204	
in this study, glass shards and micropumices of pyroclastic fall and flow units from the Castel Broco eruption, 205	
Vulsini Volcanic District (e.g. Palladino et al., 2010), the Tufo Giallo di Sacrofano eruption, Sabatini Volcanic 206	
District (Sottili et al., 2010) and the layer R94-30C, from Tiber River MIS 11 aggradational successions (Marra 207	
et al., 2016), were analysed and are presented in this study. 208	
 209	
Polishing and carbon coating of epoxy pucks were performed for electron microprobe analyzer wavelength 210	
dispersive spectroscopy (EPMA-WDS) analysis at the Istituto di Geologia Ambientale e Geoingegneria of the 211	
Italian National Research Council (IGAG-CNR, Rome), at the Institute of Geology and Mineralogy of the 212	
University of Cologne (IGM-UC, Germany) and at the Geoforschungszentrum (GFZ), Potsdam (Germany). 213	
At IGAG-CNR, geochemical analyses of individual glass shards were performed using a Cameca SX50 EPMA 214	
equipped with a five-wavelength dispersive spectrometer, calibrated and set to the same operating conditions 215	
as in previous studies (Giaccio et al., 2017). At IGM-UC, individual glass shards and reference standards were 216	
measured using a JEOL JXA-8900RL EPMA equipped with a five-wavelength dispersive spectrometer, which 217	
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was set to 12 keV accelerating voltage, 6 nA beam current, and 5 µm beam diameter. Detailed settings such as 218	
counting times, measuring order, and reference materials used for calibration are given along with the 219	
supplementary material. At the GFZ, major-element compositions of single glass shards were determined using 220	
a JEOL JXA8500F EPMA. The instrument was set at an accelerating voltage of 15 kV, a 10 nA beam current, 221	
and a 3–10 µm beam with count times of 20 s for the elements Mg, P, Cl, Ti, Mn, and Fe, and 10 s for F, Na, 222	
Al, Si, K, and Ca. A range of MPI-DING reference glasses including GOR128-G (komatiite), ATHO-G 223	
(rhyolite) and StHs6/80 (andesite) (Jochum et al., 2006) as well as natural Lipari obsidian (Hunt and Hill, 224	
1996; Kuehn et al., 2011) were employed as secondary glass standards in order to maintain inter-laboratory 225	
consistency of analytical data. 226	
Geochemical analyses yielding analytical totals <93 wt.% were rejected, whereas all analyses with higher 227	
totals were normalized to 100% on a LOI-free basis, excluding volatiles (Cl, SO3, and F). Glass shards and 228	
micropumices were classified according to their geochemical composition using total alkali vs. silica (TAS) 229	
diagrams (Le Bas et al., 1986).  230	
 231	
3.5.2. 40Ar/39Ar geochronology  232	
40Ar/39Ar geochronology was performed at the Laboratoire des Sciences du Climat et de l’Environnement 233	
(CNRS-LSCE; Gif Sur Yvette, France). Tephra TF-126 (sample code F5-58 64-63; 97.24 m depth) was sieved 234	
and subsequently 25 pristine sanidine crystals were picked from the 300 µm to 400 µm fraction. These crystals 235	
were irradiated 2 hours in the Cd-lined, in-core CLICIT facility of the Oregon State University TRIGA reactor.	236	
After irradiation, 15 crystals were individually loaded in a copper sample holder and put into a double vacuum 237	
Cleartran window. Each crystal was then	fused using a Synrad CO2 laser at 15% of nominal power (~25 Watts). 238	
The extracted gas was purified for 10 min by two hot GP 110 and two GP 10 getters (ZrAl). Argon isotopes 239	
(36Ar, 37Ar, 38Ar, 39Ar and 40Ar) were analysed by mass spectrometry using a VG5400 equipped with an 240	
electron multiplier Balzers 217 SEV SEN coupled to an ion counter. The neutron fluence J value for each 241	
sample was calculated using co-irradiated Alder Creek Sanidine (ACs-2 hereafter) standard with an age of 242	
1.1891Ma (Niespolo et al., 2017) and the total decay constant of Renne et al. (2011). The J-value computed 243	
from standard grains is 0.00053001 ± 0.00000159. Mass discrimination was estimated by analysis of Air 244	
pipette throughout the analytical period, and was relative to a 40Ar/36Ar ratio of 298.56 (Lee et al., 2006). 245	
Procedural blank measurements are computed after every two or three unknowns, depending on the beam 246	
measured. For 10 min static blank, typical backgrounds are about 2.0-3.0 10-17 and 5.0 to 6.0 10-19 mol for 40Ar 247	
and 36Ar, respectively. The precision and accuracy of the mass discrimination correction was monitored by 248	
weekly measurements of air argon of various beam sizes. 	249	
For a consistent comparison of geochronological data, where possible (i.e., when monitor constant used is 250	
known and declared), all 40Ar/39Ar ages used from the literature have been recalculated relative to an age of 251	
1.1891 Ma for the Alder Creek sanidine monitor standard (Niespolo et al., 2017), with the uncertainties 252	
expressed at 2s.  253	
 254	
4. Results 255	
4.1. Borehole data 256	
Gamma ray logging data show a trend towards lower values from the bottom to the top, and the development 257	
from shorter to longer periods from the base to the borehole top (Fig. 3b). While in the lower part several 258	
quasi-cyclic alternations with a period around 5 m can be seen in the gamma ray data, two much longer quasi-259	
cycles from ~38-22 m and from ~22 m to the top are especially prominent. This ~20 m cyclicity can be seen 260	
also further down in the record (Fig. 3b). Cyclic behaviour can be visualized in a wavelet analysis plot using 261	
the ’biwavelet‘ R package (Gouhier et al., 2018; R Core Team, 2017), clearly showing the trend of longer 262	
periods towards the top (supplementary Fig. S1). The seemingly strong cyclicity at ~35 m is the result of a 263	
single peak in the data (see Figs. 2b and S1). The magnetic susceptibility shows various peaks from a base 264	
line, but the log10 of the magnetic susceptibility emphasizes a minor variability characterised by a quite regular 265	
cyclicity, which appears coherent with that depicted by gamma ray (Fig. 3a).  266	
 267	
4.2. Lithology and XRF scanning calcium counts of the F4-F5 composite core 268	
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The ~98 m-long F4-F5 core composite is mainly composed of grey-whitish lacustrine calcareous marl, with a 269	
variable proportion of darkish clay. Starting from the depth of ~60 m, tephra layers become particularly 270	
frequent and thick (up to 15-20 cm), and are often surmounted by dm-thick intervals made of volcanoclastic 271	
material, likely deriving from the immediate reworking of tephra fallout in lake catchment. 272	
Calcium represents one of the major element components of the sediments and shows large variations in XRF 273	
counts (0.15-4.60 × 106 cps) (Fig. 3e). Calcium has a polymodal statistical distribution, which can be divided 274	
in seven, partially overlapping, normally distributed populations (Fig. 3e). A broad population of intermediate 275	
values (µ ± 2σ: 2.30 ± 1.25) separates two groups consisting of three populations each and clustering in the 276	
high (µ ± 2σ: 4.30 ± 0.30; 3.65 ± 0.50; 3.10 ± 0.35) and in the low (µ ± 2σ: 2.00 ± 0.22; 1.65 ± 0.30; 1.15 ± 277	
0.60) range of Ca counts, respectively. These two clusters depict five intervals characterized by prevailing high 278	
Ca counts intervened with four intervals with prevailing low Ca counts along the succession (Fig. 3e). The 279	
thickness of intervals with prevailing high Ca counts ranges between 4.85 and 11.80 m, while intervals with 280	
prevailing low Ca counts are thicker and range between 10.48 and 15.18 m in thickness. 281	
 282	
4.4.  Palaeomagnetic data 283	
The palaeomagnetic data show normal direction with relative steep dipping inclination values (Fig. 3d). 284	
Because of the rotation movement during the drilling process, the cores are not oriented for the North direction 285	
and the declination cannot be taken into account. Gaps in the dataset arise from drilling induced disturbances, 286	
which have destroyed the primary direction recorded in the sediment. After cleaning the data set, conspicuous 287	
data occur around 13 mcd, 25 mcd, and 39 mcd. These sections are characterized by reversed inclination values 288	
or flat dipping normal inclination values. In contrast to the data from drilling induced disturbances, which 289	
show similar features, these changes in inclination are similarly recorded in both cores, F4 and F5. The MS of 290	
the core material was used for determination of the relative  palaeointensity (RPI) by normalizing the remanent 291	
magnetization measured after the 12 mT AF demagnetization step by the MS (Tauxe, 1993). Because of very 292	
low MS values (< 15 ·10-6 SI) of large parts of the cores a reliable calculation of the RPI was not possible by 293	
this method. 294	
 295	
4.5. Tephra lithology and glass composition 296	
A total of ~130 visible tephra layers were identified in the F4-F5 composite profile during core inspection. The 297	
thickness and main lithological features of the eleven investigated and described here tephra are summarized 298	
in Table 1. Full glass compositions are provided in supplementary dataset 2 (SD 1), while their classification 299	
according to the total alkali versus silica diagram (TAS, Le Bas et al., 1986) is shown in Figure 3a.  300	
In the TAS diagram the analysed tephra layers cluster in two different compositional groups (CG), represented 301	
by K-foidites of CG1, which includes six layers (TF-4, TF-5, TF-8, TF-85, TF TF-116, and TF-117), and 302	
potassic trachytes-phonolites to tephriphonolites and phonotephrites of CG2, which includes five other tephra 303	
layers (TF-7, TF-12, TF-17, TF-62, and TF-126) (Fig. 4a).  304	
 305	
4.6. 40Ar/39Ar age of TF-126  306	
Full analytical details for individual crystals are given in the supplementary dataset 2 (SD 2) and presented in 307	
Figure 4 as a probability diagram with the associated inverse isochron. Individual crystal age uncertainties are 308	
given at 1s level and weighted mean age uncertainties are quoted at 2s level. After excluding three crystals 309	
older than the main crystal age population, the remaining twelve crystals have equivalent ages within 310	
uncertainty (Fig.  4) giving a meaningful weighted mean age of 424.3 ± 3.2 ka (MSWD = 1.16, P = 0.7; Fig.  311	
4). This age is undistinguishable within uncertainty from the inverse isochron age (i.e., 422.8 ± 3.8 ka (MSWD 312	
= 0.87). The 40Ar/36Ar initial intercept is identical within uncertainty to the atmospheric one (see SD 2), 313	
excluding an excess argon component. Therefore, the age of 424.3 ± 3.2 ka (2s) is considered as the age of 314	
the eruption and deposition of tephra TF-126 hereafter.  315	

 316	
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5. Discussion 317	
5.1. Palaeoclimate and preliminary chronological framework for F4-F5 318	
The variability of Ca content in Fucino lake sediments is mainly related to variations in bio-mediated 319	
precipitation of endogenic calcite, the precipitation of which depends on the lake’s primary productivity, in 320	
turn related to temperature and hydrology (e.g., Mannella et al., 2019). Based on the well constrained 321	
tephrochronology available for the F1-F3 succession (Fig. 3g), fluctuations in the Ca XRF profile have been 322	
demonstrated to express the glacial-interglacial and sub-orbital climatic variability of the last ~190 kyr, with 323	
high Ca during warm MIS 5 and MIS 1, and lower Ca during the cold MIS 6 and MIS 4-MIS 2 (Mannella et 324	
al., 2019) (Fig. 3f).  325	
The general pattern of the major fluctuations of the Ca XRF curve recorded in the upper 35 mcd of the F4-F5 326	
succession replicates the Ca XRF profile of the entire F1-F3 core, indicating that the two stratigraphic intervals 327	
span the same temporal interval. With the exception of some sharp and prominent spikes, clearly related to 328	
thick tephra layers, gamma ray and magnetic susceptibility signals of the upper 35 mcd of core F4-F5 fluctuate 329	
coherently with Ca counts (Fig. 3a-b). This suggests they can be considered as further proxies of the glacial-330	
interglacial cyclicity. Indeed, low gamma ray and magnetic susceptibility are consistent with the low detrital 331	
input during warm MISs, while high levels of these parameters indicate a high detrital input consistent with 332	
colder and drier climatic conditions of the cold MISs.  333	
The overlap of the upper 35 mcd of the F4-F5 core with the 83 m-long F1-F3 core, i.e., the last ~190 kyr 334	
indicates a sedimentation rate of ~0.2 mm/yr for F4-F5, in line with estimates from the GL (Giaccio et al., 335	
2015b) and SP cores (Giaccio et al., 2017) located close by (Fig. 1). Additional confirmation is provided by 336	
the tephrochronological study of the cores FUC-S5-6 (Di Roberto et al., 2018), where an average of ~0.13 337	
mm/yr for the last 56 kyr has been shown. This lower sedimentation rate is in agreement with the position of 338	
the FUC-S5-6 site, where the sedimentary wedge is expected to become thinner and the isochrones shallower 339	
(Fig. 1).  340	
Based on this coherent stratigraphic framework, the third, fourth, and fifth intervals with relatively high 341	
concentration of Ca, and, conversely, low gamma ray and magnetic susceptibility, can be related to the MIS 7, 342	
MIS 9 and MIS 11, respectively. The chronological framework is further supported by the direct 40Ar/39Ar 343	
dating of tephra TF-126, which provides a robust age constrain for the base of the fifth and last interval with 344	
relatively high Ca content at 424.3.2 ± 3.2 ka (Fig. 3g), near the onset of MIS 11 at 424 ka based on the benthic 345	
isotope stack (Lisiecki and Raymo, 2005) (Fig. 3g) and ~426 ka based on U/Th dating from the Chinese 346	
speleothems (Chen et al., 2016). Despite this strong chronological constrain, the general shape of the Ca profile 347	
corresponding to the MIS 11 interval appears quite fragmentary with respect to a more regular trend expected 348	
for this period, as, e.g., recorded in LR04 benthic record (Fig. 3h). This might be due to both significantly 349	
changing in sedimentation rates and the occurrence of tephra layers (Fig. 3c), which are quite frequent and 350	
thick  in this stratigraphic interval, that results in strong disturbances of the Ca profile that mimic climatic 351	
oscillations within MIS 11. Therefore, in order to have a reliable climatic expression of MIS 11, a detailed age 352	
model need to be developed by removing all tephra layers; a procedure which is commonly done when dealing 353	
with detailed paleoclimatic investigations (e.g., Mannella et al., 2019), but unnecessary for the purposes of this 354	
paper. We can thus use the preliminary chronological framework deriving from the correlation of the F4-F5 355	
with the LR04 benthic record (Fig. 4; Lisiecki and Raymo, 2005) for getting a first age estimation of the tephra 356	
in the lower part (35-98 mcd) of the F4-F5 core. This provides useful, though approximate, chronological 357	
constraints for circumscribing the time interval to be consider to identify the potential equivalents of the Fucino 358	
tephra layers (Fig. 3c). For this purpose, we considered the position of the F4-F5 tephras in Ca profile to 359	
evaluate their climatostratigraphic context within the record of the LR04 benthic stack, and thus to estimate 360	
their age according to LR04 chronology assuming a conservative uncertainty of ca. ± 5 ka (Fig. 3g). 361	
 362	
5.2.  Palaeomagnetic data of F4-F5 363	
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In comparison to the ~58° inclination of today’s earth magnetic field in the Fucino Basin, the determined 364	
inclination values of the palaeomagnetic field of the sediments from F4-F5 cores are frequently too steep (Fig. 365	
3d). The deviation may arise from slight deformations of the material during the coring process, just as by 366	
considering the inclination of the 16 mT AF step instead of evaluating the characteristic remanent 367	
magnetisation (ChRM). However, downcore changes of the palaeomagnetic field show sections with 368	
conspicuous values around 13 mcp, 25 mcp, and 39 mcp. According to the age constrains provided by 369	
tephrochronology, these features coincide with the positions expected for the geomagnetic excursions 370	
Laschamp (40-41 ka), Blake (~120 +/- 12 ka), and Iceland Basin (189-192 ka), respectively (Channell, 2006; 371	
Channell 2014; Singer et al., 2014; Vasquez and Lidzbarski 2012). This result suggests the Fucino Basin to 372	
host an outstanding magnetic record and justifies the planed very time-consuming detailed study of discrete 373	
samples, necessary to consider the ChRM.   374	
 375	
5.3. Volcanic sources of tephra layers from core F4-F5 376	
The Fucino Basin is located at a relatively short distance from the peri-Tyrrhenian and the insular Quaternary 377	
Italian volcanic centres (i.e., ~100 km to some hundreds of km; Fig. 1) that were subjected to intense and 378	
frequent explosive activity during the Quaternary (e.g. Peccerillo, 2017). Hence, these volcanic centres 379	
represent the most likely sources for the Fucino tephra layers. The geochemical composition of CG1 (Fig. 4a) 380	
tephra layers is unusual within the framework of the Italian Quaternary volcanism since large explosive 381	
eruptions fed by K-foiditic magma were rare and characteristic of only few volcanic centres (e.g. Peccerillo, 382	
2017). Among these, the Colli Albani volcanic district was the most productive source of foiditic distal tephra 383	
in Central Mediterranean area (e.g. Giaccio et al., 2013a; Giaccio et al., 2014; Giaccio et al., 2017; Leicher et 384	
al., 2016; Petrosino et al., 2014b).  385	
The glass geochemical compositions of CG2 (potassic trachytes-phonolites to tephriphonolites and 386	
phonotephrites) tephra layers are instead shared by a number of volcanic districts and centres ranging from the 387	
northern Latium to the Campanian regions (e.g., Peccerillo, 2017) (Fig. 1), making the identification of their 388	
specific volcanic source challenging. However, the CaO/FeO vs Cl diagram (Giaccio et al., 2017) can help to 389	
discriminate between their different sources (Fig. 4b). Thus, layer TF-7 can be referred to Ischia, layers TF-390	
12/-17 to Campi Flegrei, and layer TF-126 to the Latium volcanoes, including Vico, Vulsini and Sabatini (Fig. 391	
4b). The source of the remaining tephra TF-62 is more complicated to define, as its composition falls at the 392	
boundary between the Roccamonfina >450 ka and Latium volcano fields (Fig. 4b). However, based on the 393	
stratigraphic position of TF-62 within late MIS 9 (~280-300 ka, Fig. 3g-h), it can be better ascribed to the 394	
Latium volcanoes than to Roccamonfina, as, at the current state of knowledge, the products from 395	
Raccomonfina <450 ka have a distinctly higher content of Cl and a lower CaO/FeO ratio (Fig. 4b). 396	
Furthermore, at the same content of Cl, tephra TF-62 shows a relatively high and wide variability of the 397	
CaO/FeO ratio (1.0 to 1.5, Fig. 4b), which, among the Latium volcanoes, is distinctive of the products from 398	
the Sabatini Volcanic District. Therefore, layer TF-62 can be more likely referred to the Sabatini activity. A 399	
summary of the source attribution of all investigated tephra is reported in Table 1. 400	
 401	
5.4. Individual tephra correlation  402	
5.4.1. Tephra layers between 0-35 mcd of core F4-F5, equalling 0-83 mcd of the F1-F3 core  403	
A total of six chemically analysed tephra layers occurring within the upper 35 mcd in the new F4-F5 core can 404	
be directly linked to already identified tephra layers from the F1-F3 core. These include tephras TF-4, TF-5, 405	
TF-7, TF-8, TF-12 and TF17 (Giaccio et al., 2017), which have been allocated to volcanic sources from the 406	
Campanian and Roman areas and which are described in the following in more detail.  407	
 408	
5.4.1.1. Tephra from Colli Albani (GC1) 409	
F5-8 77-92 (10.56 mcd; TF-4) and F5-8 148-154 (11.13 mcd; TF-5) – these two tephra layers, belonging to 410	
the K-foidite CG1 tephra group that is attributed to the Colli Albani activity, share similar lithological features 411	
(Table 1) and heterogeneous glass compositions within the foidite field (Fig. 4a). Comparable lithological and 412	
geochemical features have been found in layers TF-4 and TF-5 in the F1-F3 record (Fig. 6a-b), which were 413	
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correlated by Giaccio et al. (2017) to the Albano 7 (35.8 ± 1.2 ka) and Albano 5 units (38.7 ± 1.6 ka, Freda et 414	
al., 2006; Giaccio et al., 2009; 2017; Mannella et al., 2019), respectively (Fig. 3f). In addition, the 415	
climatostratigraphic position of the two foiditic layers in F4-F5 within MIS 3 is similar to that of TF-4 and TF-416	
5 (Fig. 3d-e), hence strongly supporting their correlations with TF-5/Albano 7 and TF-4/Albano 5. In the F4-417	
F5 record, TF-4 is characterized by two coarse ~4.2 and 7.2 cm-thick levels separated by 5 cm of fine ash and 418	
lacustrine sediments, a lithological feature that is not observed in F1-F3. However, a similar lithological 419	
bifurcation of the tephra related to the most recent activity of the Albano maar, has been found in cores FUC-420	
S5-6 (Di Roberto et al., 2018). The two levels of coarse-grained ash were interpreted by the authors as separate 421	
units and correlated to the last two eruptions of Albano maar, namely Albano 7 and 6. However, in the eastern 422	
sector of Colli Albani, where the mid-distal occurrences of the Albano eruptions are well documented, only 423	
four fallout units, related to Albano 1, 3, 5, and 7 can be recognised (Giaccio et al., 2007). The lack of the 424	
Albano units 2, 4, and 6 in the eastern, mid-distal sectors of the volcano, indicates the moderate intensity of 425	
the eruptions and their restricted dispersal, with respect to the widespread Albano units 1, 3, 5, and 7. Thus, it 426	
is rather unlikely that tephra of the Albano 6 eruption has reached the Fucino Basin and would show 427	
comparable thicknesses and grain sizes as tephra from the largest Albano 7 eruption. Therefore, the two coarser 428	
sub-layers forming TF-4 can be more likely correlated to the two main fallout sub-units (DU4b and DU4c), 429	
that form the succession of the Albano 7 unit in mid-distal area (Giaccio et al., 2007). Alternatively, they could 430	
be the result of a basal fallout (basal sub-layer) that was followed by immediate reworking of primary deposits 431	
(upper sub-layer). 432	
 433	
F5-12 90-95 (TF-8, 17.16 mcd) – the foiditic composition of F5-12 90-95 is distinctly more homogenous 434	
compared to the above discussed TF-4 and TF-5 tephra layers (Fig. 6c). This geochemical feature is 435	
comparable with the glass composition of tephra layer TF-8 in core F1-F3 (Fig. 6c), which is correlated to the 436	
Albano 3 unit and dated between 68.7 ± 2.2 ka and 72.5 ± 3.2 ka	(Freda et al., 2006; Giaccio et al., 2009). The 437	
correlation of F5-12 90-95 with TF-8/Albano 3 is also supported by the similar climatostratigraphic position 438	
that the two tephra have in the respective records at the end of the MIS 5 period (Fig. 3e-f). 439	
 440	
5.4.1.2. Tephra from Ischia (GC2) 441	
F5-10 147-149 (14.14 mcd; TF-7) – The ages of this Ischia tephra is constrained by the overlying TF-5 and 442	
underlying TF-8 tephra between ~40 ka and ~70 ka, (Fig. 5f-g). The trachytic glass composition of F5-10 147-443	
149 matches that of tephra TF-7 (Fig. 7a) which is in a similar climatostratigraphic position within MIS 4 in 444	
composite core F1-F3 (Fig. 3d-e) and directly 40Ar/39Ar dated at 55.9 ± 1.0 ka	(Giaccio et al., 2017). TF-7 has 445	
been correlated to the marine Y-7 tephra (Giaccio et al., 2017), a widespread Mediterranean marker tephra 446	
(Tomlinson et al. 2014), deriving from the Ischia eruption of the Monte Epomeo Green Tuff (40Ar/39Ar age: 447	
55.0 ± 4.0 ka, Sbrana and Toccaceli, 2011). Furthermore, the occurrence of the Y-7 tephra is also recorded in 448	
Fucino cores FUC-S5-6 (Di Roberto et al., 2018). 449	
 450	
5.4.1.3. Tephra from Campi Flegrei (GC2) 451	
F5-15 90-91 (21.53 mcd; TF-12) – this tephra is located in a climatostratigraphic position similar to tephra 452	
layers TF-12 and TF-13 of the F1-F3 record, i.e., close to the onset of an abrupt increase in Ca content occurring 453	
in the middle part of MIS 5 (Fig. 3e-f). TF-12 and TF-13 have been correlated to the widespread marine tephras 454	
X-5 and X-6, respectively (Giaccio et al., 2017). Although X-5 and X-6 were generated by two, temporally 455	
closely spaced eruptions of the same volcanic source – likely palaeo-Campi Flegrei or the Campanian Volcanic 456	
Zone – as shown in Figure 6b, they are quite well distinguishable solely on the basis of major element 457	
composition. The geochemical comparison with both layers (Fig. 7b) suggests that tephra F5-15 90-91 matches 458	
best the composition of TF-12/X-5. The X-5 tephra has been also identified as POP3 equivalent in the Sulmona 459	
lacustrine succession in central Italy where it is 40Ar/39Ar dated at 105.6 ± 3.0 ka (Giaccio et al., 2012b). A 460	
newer and more precise 40Ar/39Ar dating of X-5 at 105.5 ± 0.5 ka derives from the Tyrrhenian Sea (Petrosino 461	
et al., 2016). 462	
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F5-20 89-91 (29.65 mcd; TF-17) – on the basis of climatostratigraphic correlation between the F4-F5 and the 463	
chronologically well constrained F1-F3 record, tephra F5-20 89-91 can be placed into the MIS 6 period (Fig. 464	
3e). Geochemically, it is characterised by a wide composition with SiO2 content ranging between 48 and 61 465	
wt%. In the F1-F3 succession, the only Campi Flegrei tephra showing the same geochemical variability and 466	
climatostratigraphic position is TF-17 (Figs. 2e-f and 6c). TF-17 has been 40Ar/39Ar dated at 158.3 ± 3.0 ka 467	
(Giaccio et al., 2017). Amato et al. (2018), on the basis of geochronological and geochemical data, identified 468	
TF-17 as the distal counterpart of the Taurano Ignimbrite from the Campanian Volcanic Zone (CVZ), which 469	
has an 40Ar/39Ar age of 160.1 ± 2.0 ka (De Vivo et al., 2001). 470	
 471	
5.4.2. Tephra layers in the newly explored interval 35-98 mcd of core F4-F5 472	
Five out of ~110 visible tephra layers within the newly extended interval between 35-98 mcd of core F4-F5 473	
have been chemically characterised and correlated with Roman volcanoes based on published and new glass 474	
data from proximal tephra deposits. 475	
  476	
5.4.2.1. Tephra from Colli Albani (GC1) 477	
F5-49 74-88/TF-85 (80.52 mcd), F5-57 0-7/TF-117 (95.13 mcd) and F5-57 18-22/TF-118 (95.29 mcd) – 478	
based on geochronological constraints – i.e., the tephrostratigraphic correlation between the successions of F4-479	
F5 and F1-F3, the general climatostratigraphic pattern of F4-F5, and the 40Ar/39Ar dating of the tephra TF-126 480	
– and the typical foiditic glass composition tephra layers TF-85 (F5-49 74-88), TF-117 (F5-57 0-7) and TF-481	
118 (F5-57 18-22) can be related to activities of the Colli Albani volcanic district. Specifically, theses layers 482	
refer to the middle-late stage of the ‘Tuscolano-Artemisio’ (~561-351 ka, Karner et al., 2001) or ‘Vulcano 483	
Laziale’ phase (Giordano et al., 2006). This phase is the most significant in terms of erupted volumes and 484	
intensity of the Colli Albani eruptive history, and comprises several caldera-forming eruptions, the products 485	
of which have been widely dispersed in the central-southern Apennines (Giaccio et al., 2013a; Giaccio et al., 486	
2013b; Giaccio et al., 2014; Petrosino et al., 2014b) and in the Balkans (Leicher et al., 2016). Furthermore, 487	
tephra glasses from each one of the major units belonging the Tuscolano-Artemisio phase, have a quite 488	
distinctive major element composition, making their discrimination and identification unambiguous (Giaccio 489	
et al., 2013a). 490	
The significant thickness and the relatively coarse grain-size of TF-85 (Table 1) are consistent with a large 491	
explosive eruption, which, based on the climatostratigraphic position of TF-85 in core F4-F5, occurred during 492	
MIS 10, roughly between 350-375 ka (Fig. 3d-f). In this time-period was the Villa Senni eruption, the most 493	
recent caldera-forming event of the Tuscolano-Artemisio phase, dated at 364.0 ± 4.0 (Marra et al., 2009) and 494	
369 ± 4.2 ka (Marra et al., 2019). The major element glass composition of tephra TF-85 matches that of the 495	
glassy scoria from the proximal Villa Senni unit and its distal equivalent tephra PAG-t4, from Paganica-San 496	
Demetrio Basin, central Italy, dated to 368.0 ± 2.0 ka (Giaccio et al., 2012a) (Fig. 8a). TF-85 can be thus 497	
confidentially correlated to the Villa Senni eruption. 498	
Tephra TF-117 (95.13 mcd) is characterized by a noticeable thickness of 7 cm and a coarse grain-size, 499	
suggesting again a large Colli Albani explosive eruption. Based on its climatostratigraphic position and being 500	
located ~3 m above the 40Ar/39Ar dated TF-126, this eruption occurred early in MIS 11, at ~400-420 ka (Fig. 501	
3d-f). The estimated high eruption magnitude and the supposed age of TF-117 are compatible with the 502	
penultimate large eruption of the Tuscolano-Artemisio phase; i.e., the Pozzolane Nere eruption dated at 405 ± 503	
2 ka (Marra et al., 2009). Comparisons of the geochemical composition of TF-117 with that of the proximal 504	
Pozzolane Nere equivalents confirm the correlation (Fig. 8b). Specifically, the 2 cm-thick basal unit of TF-505	
117 (sample F5-57 5-7; Table 1) shows a more homogenous composition with respect to the more scattered 506	
composition of the overlying, 5-cm-thick and coarser sub-unit (sample F5-57 0-5; Table 1), which matches 507	
very well that of the basal Plinian fall-out of the Pozzolane Nere (Marra et al., 2009). Therefore, the basal, 508	
finer and geochemically more homogeneous sub-layer of TF-117 (TF-1170-2) can be related to the basal Plinian 509	
fallout Pozzolane Nere, and consequently the uppermost, coarser and geochemically more scattered sub-layer 510	
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TF-1172-7 should represent the co-ignimbrite ash fall. However, because of strong post-depositional, 511	
zeolitization processes (Marra et al., 2009), no glass chemical data is currently available for the proximal 512	
pyroclastic flow deposits of the Pozzolane Nere for directly compare with the composition of tephra TF-1172-513	
7. The composition of the TF-1172-7 thus provides the first geochemical data for the pyroclastic flow deposits 514	
of the Pozzolane Nere eruption, which in terms of erupted volume represents the main stage of the eruption. 515	
TF-118 layer (95.29 mcd) has a comparable thickness (ca. 7 cm) to that of TF-117/Pozzolane Nere (Table 1), 516	
but its finer grain, which could be due to either a significantly smaller magnitude of the explosive event or a 517	
different shape and direction of the dispersion axis. It is separated from the overlying TF-117/Pozzolane Nere 518	
(95.13 m) by only 12 cm of lacustrine sediments (Fig. 3c; Table 1), indicating that TF-118 shortly preceded 519	
the Pozzolane Nere eruption. Pereira et al. (2018) recognized a new Colli Albani eruption just below the 520	
Pozzolane Nere units; the Fontana Ranuccio 2 fallout, dated at 407.1 ± 4.2 ka (2s analytical uncertainties) and 521	
interpreted as a Pozzolane Nere precursor. Fontana Ranuccio 2 fallout is therefore a good candidate for 522	
correlating with TF-118, immediately below the TF-117/Pozzolane Nere tephra, a hypothesis that is quite well 523	
supported by its glass composition (Fig.7c). However, as the geochemical matching is not perfect, especially 524	
for SiO2 content, the correlation of TF-118 with Fontana Ranuccio 2 has to be considered as a tentative.  The 525	
age of this Pozzolane Nere precursor is statistically indistinguishable from the age of the Pozzolane Nere, but 526	
it is slightly different in its geochemical composition (Pereira et al., 2018; Fig. 8c), making the discrimination 527	
of these two sub-contemporaneous eruptions viable.  528	
In summary, the stratigraphic order, the lithological and geochemical features and general climatostratigraphic 529	
and geochronological settings available for the three foiditic layers TF-85, TF-117 and TF-118 define an 530	
overall coherent and robust framework supporting their correlation with Villa Senni, Pozzolane Nere, and, 531	
likely, Fontana Ranuccio 2 eruptions from Colli Albano volcano, respectively. 532	
 533	
5.4.2.2. Tephra from the Sabatini volcanic district (GC2) 534	
F4-39 90-100/TF-62 (59.89 mcd) – by considering its relatively large thickness (10 cm), coarse grain-size 535	
(Table 1) and phonolitic glass composition, tephra TF-62 likely derived from a large explosive eruption from 536	
the Sabatini volcanic district. Layer TF-62 occurs in the late part of the MIS 9 period, roughly at 300-280 ka 537	
(Fig. 3f). Thus, it is chronologically consistent with the early stages of the Sacrofano Caldera phase, which took 538	
place in the eastern sector of the Sabatini Volcanic District (SVD) at ~300-200 ka, and the near-539	
contemporaneous Bracciano Caldera phase, which occurred in the central area of SDV at ~325-200 ka (Sottili 540	
et al., 2010). 541	
The Sacrofano Caldera phase is dominated by diffuse Strombolian and hydromagmatic activity and 542	
subordinate Plinian to sub-Plinian events, among which the Tufo Giallo di Sacrofano (288.0 ± 2.0 ka, Sottili 543	
et al., 2010) and the Magliano Romano Plinian fall (313.0 ± 2.0 ka, Sottili et al., 2010) stand out as the major, 544	
caldera forming eruptions. 545	
The Bracciano Caldera phase was similarly characterized by strombolian, effusive, and hydromagmatic 546	
activity, but also by the occurrence of some large explosive events, including the main caldera forming 547	
eruptions of the Tufo di Bracciano Unit (324.0 ± 2.0 ka, Pereira et al., 2017), the Tufo di Pizzo Prato (251.0 ± 548	
16.0 ka, Sottili et al., 2010), and the latest Tufo di Vigna di Valle (196.0 ± 7.0 ka, Sottili et al., 2010) pyroclastic 549	
flow-forming eruptions. 550	
The best candidate for a correlation of TF is the large caldera forming eruption of the Tufo Giallo di Sacrofano 551	
(TGDS), as its large magnitude fit with the relatively thick and coarse TF-62 and its age is close to the estimated 552	
age of TF-62 (~280-300 ka; Fig. 3g). In the TAS diagram and other selected bi-plots, the glass chemical 553	
composition of TGDS shares with the predominant (~65% of the analysed glass particles), most evolved 554	
component of the TF-62 the alkali and SiO2 content (~15-16 wt% and 56-58 wt%), a peculiar high Al2O3 555	
content (20.5-21.5 wt%) (Fig. 9a), and a very low MgO content (0.15 wt%) (Table S1). In summary, with the 556	
exception of the K2O/Na2O ratio, which is higher in TGDS with respect to TF-62 (Table S1), the content of all 557	
other major and minor elements of the most evolved component of the TF-62 matches very well the TGDS 558	
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glass composition (Table S1). Therefore, the TGDS is indicated as the most probable proximal counterpart for 559	
TF-62, giving an age of 288.0 ± 2.0 ka to this latter. 560	
 561	
5.4.2.3. Tephra from the Vulsini volcanic district (GC2) 562	
F5-58 64-66/TF-126 (97.24 mcd) – the 40Ar/39Ar age directly determined on tephra TF-126 (424.3 ± 3.2 ka, 563	
Fig.  4), restricts the chronological range of the potential equivalent to the narrow interval of ~421-428 ka. 564	
Based on its phonolitic composition and the CaO/FeO vs Cl diagram either the Vulsini, Vico, or Sabatini 565	
volcanic districts can be potential sources of this tephra (Fig. 5b). 566	
The Southern Sabatini phase (~500 to ~400 ka, Marra et al., 2014) was the most intense one in terms of 567	
explosivity and magnitude of the eruptive history of Sabatini Volcanic District (Sottili et al., 2004). However, 568	
no significant eruption has been recognized so far between the Plinian Fall F dated to 449.0 ± 7.0 ka (Marra et 569	
al., 2014) and the following minor activity of the San Abbondio Ash-lapilli Succession, dated to 391.0 ± 4.0 ka 570	
(Marra et al., 2014). Therefore, at the present state of the knowledge, a Sabatini origin for TF-126 appears 571	
unlikely. 572	
The earliest activity of Vico volcano, the Vico Period I (Perini et al., 2004) of ~400-420 ka (Barberi et al., 573	
1994) was also characterized by an intense explosive activity and by the occurrence of two Plinian eruptions, 574	
named Vico a and Vico b (Cioni, 1987; Laurenzi and Villa, 1987). Unfortunately, only whole-rock 575	
geochemical composition are available for the proximal units of Vico Period I at present, which are not fully 576	
suitable for a reliable chemical comparison with tephra glass composition. Glass geochemistry is however 577	
available for some tephra attributed to Vico Period I found in distal settings of Rome are, Tuscany region, 578	
Sulmona Basin and Lake Ohrid (Bigazzi et al., 1994; Marra et al., 2014; 2016; Regattieri et al., 2016; Kousis 579	
et al., 2018), and that thus likely represent the main explosive eruptions of this Vico phase. All these studies 580	
indicate that the most widespread tephra of Vico Period I are unusual with respect to the most common 581	
compositions of the Latium ultrapotassic rocks (i.e., trachyte, phonolite, tephriphonolite), as they are 582	
characterized by a trachytic-rhyolitic bimodal composition, with a distinctive rhyolitic component being often 583	
the dominant or even the sole one. In combination with the slightly older age than Vico Period I, the lack of a 584	
rhyolitic population in TF-126 would rule out Vico as a possible source of TF-126 tephra. 585	
The upper part of the Bieadano Synthem of the Vulsini Volcanic District, spanning the late MIS 12-MIS 10 586	
period, and thus encompassing the age of TF-126, comprises at least three Plinian falls. The Ponticello Pumices 587	
(352.0 ± 4.0 ka), the Pumice Fallout 0 (381.0 ± 9.0 ka), and the Castel Broco eruptions  (Palladino et al., 2010). 588	
Of these, only Castel Broco is chronologically consistent with TF-126, although no direct age determination is 589	
available for pyroclastic units of this eruption. Castel Broco deposits are in fact found below a Vico a, dated 590	
to 419.0 ± 3.0 ka (Laurenzi and Villa,1987), and above the Piano delle Selva Ignimbrite, which is substantially 591	
younger than ~490 ka (Palladino et al., 2010 and references therein). The major element chemical composition 592	
of glass from both Plinian and pyroclastic flow units of Castel Broco succession match quite well that of TF-593	
126 (Fig. 9b). Though the wide age range of Castel Broco eruption does not allow a precise chronological 594	
confirmation, the chemical composition strongly supports the correlation of TF-126 with Castel Broco, which 595	
thus could be indirectly, but precisely, dated at 424.3 ± 3.2 ka. 596	
As far as the potential distal equivalents are concerned, the age of TF-126 is statistically indistinguishable from 597	
those of the following three tephra: (i) R94-30C, from Roma costal area, which marks the glacial termination 598	
V in MIS 12-MIS 11 aggradational successions of the Tiber River, yielding a 40Ar/39Ar age of 423.4 ± 5.0 ka 599	
(Marra et al., 2016); (ii) OH-DP-1733, from Lake Ohrid succession, which is stratigraphically located at the 600	
MIS 12-MIS 11 transition of the Lake Ohrid  palaeoclimatic records, with a modelled age of 422.3 ± 6.1 ka 601	
and attributed to the Roccamonfina volcano (Leicher et al., in review); and (iii) MOL 13, from Bojano Basin, 602	
southern Italy, dated by 40Ar/39Ar method at 427.3 ± 6.0 ka and related to Rio Rava phase activity (550-358 603	
ka; Rouchon et al., 2008) of the Roccamonfina volcano (Amato et al., 2014).  604	
However, certain differences in glass composition do not support a correlation of the three Roman, Bojano and 605	
Ohrid tephra, neither among them nor with TF-126 tephra (Fig. 9b). This highlights a quite complex framework 606	
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of the central Mediterranean tephrostratigraphy during the MIS 12-MIS 11 transition (cfr. Leicher et al., in 607	
review), indicating the occurrence of several temporally closely spaced eruptions from multiple peri-608	
Tyrrhenian volcanic sources, including Vulsini (Castel Broco/TF-126), Roccamonfina (post-Rio Rava, MOL 609	
13 and OH-DP-1733) and at least another currently undetermined volcano (R94-30C, Vico?). 610	
 611	
5.5. The composite Fucino tephra record and preliminary age model 612	
5.5.1. F1-F3/F4-F5 composite tephra record spanning the last 430 kyr 613	
The recognition of tephra TF-4, TF-5, TF-7, TF-8, TF-12, and TF-17 in the F4-F5 record, shared with the 614	
previously investigated core F1-F3, allows a robust synchronization of the two records along six tie points 615	
(Fig. 10). Moreover, the high-resolution XRF Ca profiles of the F1-F3 and F4-5 successions enable further 616	
refinement of the correlation using the high-frequency variability of this element as an aligning tool (Fig. 9), 617	
which allows us to transfer, on the basis of the tephra stratigraphic order and climatostratigraphic position, all 618	
F4 tephra in F5 record, and vice versa (Fig. 10). This results in a composite F1-F3/F4-F5 record of 134 tephra 619	
that would make Fucino Basin the richest archive of the peri-Tyrrhenian explosive volcanism continuously 620	
spanning over the last 430 kyr.  621	
Significantly, the new F4-F5 composite record improves the general tephrostratigraphic framework, not only 622	
for the previously unexplored temporal interval of ~190-430 ka (Fig. 11), but also for the interval spanning the 623	
last 190 kyr (Fig. 10). Indeed, the combination of the F1-F3 and F4-F5 cores adds seven new tephra in the 190 624	
ka-present interval that apparently were not documented in core F1-F3, because of either drilling issues and/or 625	
the possible lenticular geometry of the tephra beds. Four of these new tephra layers are situated in a MIS 3-626	
MIS 4 interval between TF-7 (Y-7, ~56 ka) and TF-8 (~70 ka), one at the onset of MIS 5, just below TF-14 627	
(Sabatini, 126.0 ± 1.0 ka), and two in MIS 6, preceding TF-17 (Taurano Ignimbrite, 159.4 ± 1.6 ka) (Figs. 10 628	
and 11). 629	
However, the major contribution of the F4-F5 record in building the new composite Fucino tephra record is 630	
represented by its lowermost interval between 35-98 mcd. F4-F5 enables us to extend the Fucino record back 631	
to 430 ka, with more than 100 tephra spanning the MIS 7-MIS 11 or 190-430 ka interval (Fig. 11). Indeed, 632	
within the framework of the central Mediterranean tephrostratigraphy, the MIS 7-MIS 11 interval is among 633	
the lesser documented and known. Many of the terrestrial or marine records of this region span either younger 634	
(e.g., Monticchio: Wulf et al., 2004; 2012; San Gregorio Magno; Munno and Petrosino, 2007; Tyrrhenian Sea: 635	
Paterne et al., 2008; Adriatic Sea: Bourne et al., 2010; Bourne et al., 2015; Ionian Sea; Insinga et al., 2014) or 636	
older, and also discontinuous, intervals (Acerno Basin: Petrosino et al., 2014b; Mercure Basin: Giaccio et al., 637	
2014; Petrosino et al., 2014a; Sulmona Basin: Giaccio et al., 2015b). Furthermore, other long continuous 638	
successions spanning the MIS 7-MIS 11 period are located too far from the highly productive peri-Tyrrhenian 639	
volcanic sources (e.g., Lake Ohrid: Leicher et al., 2016; in review; Tenaghi Philippon: Vakhrameeva et al., 640	
2018; Vakhrameeva et al., 2019) for recording the bulk of their history and the wide gamma of their explosive 641	
intensity, including eruptions of moderate magnitude. With ~110 tephra layers distributed in the MIS 7-MIS 642	
11 interval, the composite F1-F3/F4-F5 record has thus the potential for filling the gap of knowledge for this 643	
interval of the central Mediterranean tephrochronology. 644	
 645	
5.5.2. Preliminary age model for the F1-F3/F4-F5 composite record 646	
The directly 40Ar/39Ar dated tephra TF-126 (424.3 ± 3.2 ka, correlated to Castel Broco Plinian eruption from 647	
Vulsini), and the ages transferred by geochemical fingerprinting from prominent eruptions of known age 648	
(Pozzolane Nere precursor ~407 ka, Pozzolane Nere ~405 ka, Villa Senni ~368 ka and Tufo Giallo di 649	
Sacrofano ~288 ka) provide a first chronological fundation for the MIS 7-MIS 11 period. Together with the 650	
well-established chronology for the last 190 kyr (Giaccio et al., 2017; Mannella et al., 2019), this chronological 651	
information allows us to develop a first age model for the entire F1-F3/F4-F5 Fucino composite record (Fig. 652	
12). The resulting age-depth curve for the newly explored interval is consistent with that previously established 653	
for the first 190 kyr, determined for core F1-F3 and now merged in the composite F1-F3/F4-F5 record (Fig. 654	
12). This preliminary tephra-based age-model substantially refines and consolidates the initial chronology for 655	
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the MIS 7-MIS 11 inferred from the palaeoenvironmental variability (Fig. 3), which appears fully coherent 656	
with both orbital and millennial-scale climatic fluctuations of the MIS 11-MIS 7 period, as shown by the 657	
comparison with the sea surface temperature fluctuations on the Iberian Margin (Rodrigues et al., 2017; Fig. 658	
12). The same age-model is also consistent with the known chronology for the Laschamp (40-41 ka), Blake 659	
(~120 +/- 12 ka), and Iceland Basin (189-192 ka) geomagnetic excursions, as preliminarily recognised in 660	
Fucino sedimentary archive (Fig. 12). Future investigations of discrete samples will permit to verify the 661	
occurrence of these geomagnetic excursions and likely contribute to detail their dynamics and age. 662	
Though we are aware of its preliminary state, such a chronological framework of the Fucino composite record 663	
is important for the forthcoming development of tephra and proxy investigations of Fucino cores, and, 664	
consequently, for getting high-resolution and fully independently dated tephrochronological, 665	
palaeonvironmental and palaeomagnetic records. 666	
 667	
6. Summary and concluding remarks  668	
This paper presents the first results of ongoing multiproxy investigations on a new ~98 m-long sediment core 669	
(F4-F5) retrieved from the Fucino Basin, central Italy. Concordant palaeoenvironmental (calcium XRF 670	
scanning data from core F4-F5 and gamma ray and magnetic susceptibility data from F4 downhole logging) 671	
and tephrochronological data (WDS-EMPA major element compositions and 40Ar/39Ar dating) consistently 672	
indicate that new F4-F5 succession extends the previously established 190 kyr-long tephrostratigraphic and 673	
palaeoeonvironmental records from the F1-F3 succession, back to 430 ka. Specifically, major element 674	
composition of the glass from eleven selected out of the ~130 macroscopically visible tephra layers that occur 675	
in the F4-F5 record, as well as new geochemical data from two proximal pyroclastic units of the Vulsini and 676	
Sabatini volcanic districts, enabled us to correlate them to known eruptions and/or tephra units, either already 677	
previously recognised in the 0-190 ka interval of F1-F3 (Albano 7, Albano 5, Albano 3, Y-7, X-5, and Taurano 678	
Ignimbrite) or identified in the 200-430 ka interval for the first time. These latter are: TF-62, correlated to the 679	
Tufo Giallo di Sacrofano caldera-forming eruption, from Sabatini (288 ± 2 ka); TF-85, correlated to Villa 680	
Senni caldera-forming eruption, Colli Albani (367.5 ± 1.6 ka); TF-117 and TF-118, correlated to the Pozzolane 681	
Nere caldera-forming eruption and its precursor, Colli Albani (405 ± 2 ka, and 407 ± 4.2 ka, respectively); and 682	
TF-126, correlated to Castel Broco Plinian eruption, Vulsini (419-490 ka). In particular, TF-126 has been here 683	
40Ar/39Ar dated at 424.3 ± 3.2 ka, thus providing a direct chronological constrain for the base of the core F4-684	
F5 and a first indirect, but much more precise, age for the poorly constrained Castel Broco Plinian eruption. 685	
Through tephra synchronizations, supported by palaeoenvironmental proxy alignments, we combine the F1-686	
F3 and F4-F5 records in a composite F1-F3/F4-F5 tephra record. With its ~130 ash layers spanning the last 687	
430 ka, the Fucino lacustrine succession is confirmed to be the most promising sedimentary archive for getting 688	
a long, continuous and rich record of stratigraphically ordered tephra of the whole Mediterranean area. Future 689	
developments of the ongoing investigations of the F4-F5 sedimentary cores are unavoidably intended to 690	
expand the potential of the Fucino succession as a key, reference tephrochronological record, at the service of 691	
a wide spectrum of the Quaternary sciences, including palaeoclimatology, palaeomagnetism, archaeology, 692	
Quaternary geology, active tectonics and volcanology, on a geographic scale that extends from local to extra-693	
regional. 694	
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 952	
 953	
Figure and Table captions 954	
 955	
Table 1. Analysed tephra layers from core F4-F5.  956	
 957	
Figure 1. Reference map of the Fucino Basin. (a) Location of Fucino Basin with respect to the main Quaternary 958	
Italian volcanic centres. (b) Shaded relief map showing the location of the GL, TS, SP, F1-F3 (Giaccio et al., 959	
2015b; 2017a), F4-F5 (Mannella et al., 2019, this study), FUC-S5-6 (Di Roberto et al., 2018) boreholes in the 960	
Fucino Basin. See legend in inset for the meaning of symbols. (c) Seismic Line 1 (see trace in panel b) showing 961	
the internal architecture of the Plio-Quaternary continental deposits of the Fucino Basin along a W-E oriented 962	
profile (Cavinato et al., 2002). The projected location of various boreholes on Line 1 is also shown. Seismic 963	
facies interpretation of the sedimentary infill is according to Cavinato et al. (2002).  964	
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 965	
Figure 2. Example of correlation between the overlapped F4 and F5 core sections and of the selection of the 966	
intervals used for building the composite F4-F5 record. Note that the gaps in-between two consecutive 967	
individual core sections of F4 borehole are documented in F5 borehole, and vice versa. 968	
 969	
Figure 3. Tephrostratigraphy, selected proxy data and general chronological framework for the newly F4-F5 970	
and the previously investigated F1-F3 (Giaccio et al., 2017; Mannella et al., 2019). (a) Magnetic susceptibility 971	
from Fucino F4 downhole logging (black) and its logarithmic representation (green) to show similarity to 972	
gamma ray and Ca data. (b) Gamma ray from Fucino F4 downhole logging. (c) Selected tephra from core F4-973	
F5 investigated in this study. (d) Inclination data after the 16 mT AF step with tentative position of the 974	
Laschamp (LE) Blake and Iceland Basin (IBE) geomagnetic excursions. (e) Complete tephra record and Ca 975	
counts from XRF scanning in core F4-F5. Five stratigraphic intervals with relatively high Ca counts are 976	
highlighted in yellow and correlated to the warm Marine Isotope Stage (MIS) 1 to 11 (the threshold is at 22700 977	
cps, see text for explanation). (f) Complete tephra record and Ca counts from XRF scanning in core F1-F3 978	
(Giaccio et al., 2017; Mannella et al., 2019). (g) Combined tephrochronology of F1-F3 and F4-F5 core. (h) 979	
LR04 stack of marine benthic oxygen isotope records (Lisiecki and Raymo, 2005). Data source: 40Ar/39Ar, 14C, 980	
astrochronological, modelled ages and correlation of tephra of the last 190 kyr: Giaccio et al. (2017) and 981	
Mannella et al. (2019) and reference therein. The boundaries of the marine isotope stages (MIS) are according 982	
to Railsback et al. (2015). 983	
 984	
Figure 4. Representative major element compositions for the analysed F4-F5 tephra layers. (a) Total alkali 985	
versus silica classification diagram (Le Bas et al., 1986) of the F4-F5 tephra distinguished in two compositional 986	
groups (CG1 and CG2). (b) CaO/FeO vs Cl discriminating diagram of the volcanic sources of the Italian 987	
potassic trachyte-phonolite and tephriphonolite tephra (modified from Giaccio et al., 2017) for the F4-F5 988	
tephra. The CaO/FeO vs Cl diagram has been updated with the following data: Roccamonfina: Amato et al. 989	
(2014) and Galli et al. (2017); Vulsini, Vico Period I (P-I) and Period II (P-II) and Sabatini: this study and 990	
Author’s unpublished data. For other references, the readers are referred to Giaccio et al. (2017).  991	
 992	
Figure 5. Age probability density spectra diagram (left) and inverse isochrone (right) of tephra TF-126 993	
(sampling code; F5-58 64-66). Blue and white bars/ indicate the individual ages included and discarded as 994	
weighted mean age, respectively.  995	

 996	
Figure 6. Total alkali versus silica classification diagram after Le Bas et al. (1986)and representative bi-plots 997	
for the tephra F5-8 77-92 (a), F5-8 148-155 (b) and F8-12 89-91 (c) from theF4-F5 record compared with their 998	
equivalents in core F1-F3. Data source: glass-WDS of Fucino TF-4, TF-5 and TF-8: Giaccio et al. (2017); 999	
40Ar/39Ar age of Fucino TF-5: weighted mean of dating from (Freda et al., 2006; Giaccio et al., 2009; Giaccio 1000	
et al., 2017), and Mannella et al. (2019); glass composition of Albano 7 Colli Albani: Giaccio et al. (2007); 1001	
40Ar/39Ar age of Albano 7 and Albano 3: weighted mean of dating from Freda et al. (2006) and Giaccio et al. 1002	
(2007). 40Ar/39Ar ages are recalculated relative to an age of 1.1891 Ma for the Alder Creek sanidine monitor 1003	
standard (Niespolo et al., 2017), with the uncertainty expressed at 2s. 1004	
 1005	
Figure 7. Total alkali versus silica classification diagram Le Bas et al. (1986) and representative bi-plots for 1006	
the tephra F5-8 148-149 (a), F5-15 90-91 (b), F5-20 89-91 (c) from core F4-F5 compared with their equivalents 1007	
in core F1-F3 and with some selected proximal or distal counterparts. For comparison, in panel (b) also the 1008	
composition of X-6 layer (grey text), not correlated with F5-15 90-91, is showed. Data source: glass-WDS and 1009	
40Ar/39Ar age of Fucino TF-7: Giaccio et al. (2017); glass-WDS and 40Ar/39Ar age of Monte Epomeo Green 1010	
Tuff: Tomlinson et al. (2014)) and Sbrana and Toccaceli (2011), respectively; glass-WDS of PRAD-1870: 1011	
Bourne et al. (2010); glass-WDS TF-12 and TF-13 Giaccio et al. (2017); glass-WDS and 40Ar/39Ar age of 1012	
Sulmona POP3 and POP4 tephra layers: Giaccio et al. (2012b) and Regattieri et al. (2015), respectively; glass-1013	
EDS glass-WDS and 40Ar/39Ar age of TF-17: Giaccio et al. (2017); glass-EDS and 40Ar/39Ar age of CET1-18: 1014	
Petrosino et al. (2016); glass-EDS and 40Ar/39Ar age of the proximal Taurano Ignimbrite: Amato et al. (2018) 1015	
and De Vivo et al. (2001), respectively; glass-EDS and 40Ar/39Ar age of S11 PAUP: Amato et al. (2018). The 1016	
tephra age reported on top of each figure panel is the weighted mean of the 40Ar/39Ar ages indicated in the 1017	



21	
	

respective panel. 40Ar/39Ar ages are recalculated relatively to an age of 1.1891 Ma for the Alder Creek sanidine 1018	
monitor standard (Niespolo et al., 2017), with the uncertainty expressed at 2s. 1019	
 1020	
Figure 8. Total alkali versus silica classification diagram after Le Bas et al. (1986) and representative bi-plots 1021	
for the tephra TF-85 (a), TF-117 (b), and TF-118 (c) from the F4-F5 record compared with their proximal or 1022	
distal counterparts. Data source: glass-WDS and 40Ar/39Ar age of Villa Senni proximal units: (Marra et al., 1023	
2009, 2019); glass-WDS and 40Ar/39Ar age of Villa Senni distal (PAG-t4): (Giaccio et al., 2012a); glass-WDS 1024	
and 40Ar/39Ar age Pozzolane Nere fallout: (glass-WDS): (Marra et al., 2009); glass-WDS and 40Ar/39Ar age 1025	
Fontana Ranuccio 2 (glass-WDS): (Pereira et al., 2018). The tephra age reported on top of each figure panel is 1026	
the weighted mean of the 40Ar/39Ar ages indicated in the respective panel. 40Ar/39Ar ages are recalculated 1027	
relatively to an age of 1.1891 Ma for the Alder Creek sanidine monitor standard (Niespolo et al., 2017), with 1028	
the uncertainty expressed at 2s. 1029	
 1030	
Figure 9. Total alkali versus silica classification diagram after Le Bas et al. (1986) and representative bi-plots 1031	
for the tephra TF-62 (a) and TF-126 (b) of the F4-F5 succession compared with their proximal counterparts. 1032	
TF-126 is also compared with some geochronologically compatible but geochemically different tephra R99-1033	
30C (Tiber River successions), OH-DP 1733 (Lake Ohrid) and MOL 13 (Bojano Basin). Data source: glass-1034	
WDS of Tufo Giallo di Sacrofano and Castel Broco: this study; 40Ar/39Ar age of Tufo Giallo di Sacrofano: 1035	
Sottili et al. (2010); glass-WDS and 40Ar/39Ar age of R94-30C: this study and Marra et al. (2016) respectively; 1036	
glass-WDS of OH-DP 1733: Leicher et al. (in review); glass-WDS of MOL 13: Amato et al. (2014). The tephra 1037	
age reported on top of each figure panel is the weighted mean of the 40Ar/39Ar ages indicated in the respective 1038	
panel. 40Ar/39Ar ages are recalculated relatively to an age of 1.1891 Ma for the Alder Creek sanidine monitor 1039	
standard (Niespolo et al., 2017), with the uncertainty expressed at 2s. 1040	
 1041	
Figure 10. Detailed proxy and tephra correlation of the F1-F3 record with the corresponding interval in core 1042	
F4-F5. The two tephra records are merged for a composite F1-F3/F4-F5 tephra record. Note that tephra found 1043	
only in F1-F3 or F4-F5 are transferred from one to the other via climatostratigraphic positions. 1044	
 1045	
Figure 11. Composite F1-F3/F4-F5 tephra record. References: a Mannella et al. (2019 and references therein); 1046	
b Petrosino et al. (2016) c Amato et al. (2018); d De Vivo et al.. (2001); e Sottili et al. (2010); f Marra et al. 1047	
(2009); g Marra et al. (2019); h Giaccio et al. (2012); i Pereira et al. (2018); j This study. 40Ar/39Ar ages are 1048	
recalculated relatively to an age of 1.1891 Ma for the Alder Creek sanidine monitor standard (Niespolo et al., 1049	
2017), with the uncertainty expressed at 2s. 1050	
 1051	
Figure 12. Preliminary age model for the composite F1-F3/F4-F5 tephra and F4-F5 Ca and palaeomagnetic 1052	
records. The Fucino calcium record is compared with the sea surface temperature (SST) record from the SW 1053	
Iberian Margin core MD01-2444/43 (dark red, Martrat et al., 2007) and core U1385 (red Rodrigues et al., 1054	
2017). The boundaries of the marine isotope stages (MIS) Iberian Margin record and are projected in the 1055	
Fucino record along the intercept points of the yellow/blue bars with the dashed green line, which is the linear 1056	
interpolation between the mid-point of the tephra ages reported in Figure 9. The ages of Fucino tephras (dashed 1057	
pink lines) are in turn projected in the time-scale of the Iberian Margin SST records, that are based on their 1058	
own age models (Martrat et al., 2007; Rodrigues et al., 2011). The interceptions of the orange bars with the 1059	
dashed green line also provide an age estimation for the Laschamp, Blake and Iceland Basin geomagnetic 1060	
excursions, as inferred from the preliminary  palaeomagnetic data. 1061	
 1062	
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Figure 1. Reference map of the Fucino Basin. (a) Location of Fucino Basin with respect to the main Quaternary 
Italian volcanic centres. (b) Shaded relief map showing the location of the GL, TS, SP, F1-F3 (Giaccio et al., 
2015b; 2017a), F4-F5 (Mannella et al., 2019, this study), FUC-S5-6 (Di Roberto et al., 2018) boreholes in the 
Fucino Basin. See legend in inset for the meaning of symbols. (c) Seismic Line 1 (see trace in panel b) showing 
the internal architecture of the Plio-Quaternary continental deposits of the Fucino Basin along a W-E oriented 
profile (Cavinato et al., 2002). The projected location of various boreholes on Line 1 is also shown. Seismic 
facies interpretation of the sedimentary infill is according to Cavinato et al. (2002).  

 

 
Figure 2. Example of correlation between the overlapped F4 and F5 core sections and of the selection of the 
intervals used for building the composite F4-F5 record. Note that the gaps in-between two consecutive 
individual core sections of F4 borehole are documented in F5 borehole, and vice versa. 
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Figure 3. Tephrostratigraphy, selected proxy data and general chronological framework for the newly F4-F5 
and the previously investigated F1-F3 (Giaccio et al., 2017; Mannella et al., 2019). (a) Magnetic susceptibility 
from Fucino F4 downhole logging (black) and its logarithmic representation (green) to show similarity to 
gamma ray and Ca data. (b) Gamma ray from Fucino F4 downhole logging. (c) Selected tephra from core F4-
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F5 investigated in this study. (d) Inclination data after the 16 mT AF step with tentative position of the 
Laschamp (LE) Blake and Iceland Basin (IBE) geomagnetic excursions. (e) Complete tephra record and Ca 
counts from XRF scanning in core F4-F5. Five stratigraphic intervals with relatively high Ca counts are 
highlighted in yellow and correlated to the warm Marine Isotope Stage (MIS) 1 to 11 (the threshold is at 22700 
cps, see text for explanation). (f) Complete tephra record and Ca counts from XRF scanning in core F1-F3 
(Giaccio et al., 2017; Mannella et al., 2019). (g) Combined tephrochronology of F1-F3 and F4-F5 core. (h) 
LR04 stack of marine benthic oxygen isotope records (Lisiecki and Raymo, 2005). Data source: 40Ar/39Ar, 14C, 
astrochronological, modelled ages and correlation of tephra of the last 190 kyr: Giaccio et al. (2017) and 
Mannella et al. (2019) and reference therein. The boundaries of the marine isotope stages (MIS) are according 
to Railsback et al. (2015). 
 
 

 
Figure 4. Representative major element compositions for the analysed F4-F5 tephra layers. (a) Total alkali 
versus silica classification diagram (Le Bas et al., 1986) of the F4-F5 tephra distinguished in two compositional 
groups (CG1 and CG2). (b) CaO/FeO vs Cl discriminating diagram of the volcanic sources of the Italian 
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potassic trachyte-phonolite and tephriphonolite tephra (modified from Giaccio et al., 2017) for the F4-F5 
tephra. The CaO/FeO vs Cl diagram has been updated with the following data: Roccamonfina: Amato et al. 
(2014) and Galli et al. (2017); Vulsini, Vico Period I (P-I) and Period II (P-II) and Sabatini: this study and 
Author’s unpublished data. For other references, the readers are referred to Giaccio et al. (2017).  
 

 
Figure 5. Age probability density spectra diagram (left) and inverse isochrone (right) of tephra TF-126 
(sampling code; F5-58 64-66). Blue and white bars/ indicate the individual ages included and discarded as 
weighted mean age, respectively.  
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Figure 6. Total alkali versus silica classification diagram after Le Bas et al. (1986)and representative bi-plots 
for the tephra F5-8 77-92 (a), F5-8 148-155 (b) and F8-12 89-91 (c) from theF4-F5 record compared with their 
equivalents in core F1-F3. Data source: glass-WDS of Fucino TF-4, TF-5 and TF-8: Giaccio et al. (2017); 
40Ar/39Ar age of Fucino TF-5: weighted mean of dating from (Freda et al., 2006; Giaccio et al., 2009; Giaccio 
et al., 2017), and Mannella et al. (2019); glass composition of Albano 7 Colli Albani: Giaccio et al. (2007); 
40Ar/39Ar age of Albano 7 and Albano 3: weighted mean of dating from Freda et al. (2006) and Giaccio et al. 
(2007). 40Ar/39Ar ages are recalculated relative to an age of 1.1891 Ma for the Alder Creek sanidine monitor 
standard (Niespolo et al., 2017), with the uncertainty expressed at 2s. 
 

 
Figure 7. Total alkali versus silica classification diagram Le Bas et al. (1986) and representative bi-plots for 
the tephra F5-8 148-149 (a), F5-15 90-91 (b), F5-20 89-91 (c) from core F4-F5 compared with their equivalents 
in core F1-F3 and with some selected proximal or distal counterparts. For comparison, in panel (b) also the 
composition of X-6 layer (grey text), not correlated with F5-15 90-91, is showed. Data source: glass-WDS and 



6	
	

40Ar/39Ar age of Fucino TF-7: Giaccio et al. (2017); glass-WDS and 40Ar/39Ar age of Monte Epomeo Green 
Tuff: Tomlinson et al. (2014)) and Sbrana and Toccaceli (2011), respectively; glass-WDS of PRAD-1870: 
Bourne et al. (2010); glass-WDS TF-12 and TF-13 Giaccio et al. (2017); glass-WDS and 40Ar/39Ar age of 
Sulmona POP3 and POP4 tephra layers: Giaccio et al. (2012b) and Regattieri et al. (2015), respectively; glass-
EDS glass-WDS and 40Ar/39Ar age of TF-17: Giaccio et al. (2017); glass-EDS and 40Ar/39Ar age of CET1-18: 
Petrosino et al. (2016); glass-EDS and 40Ar/39Ar age of the proximal Taurano Ignimbrite: Amato et al. (2018) 
and De Vivo et al. (2001), respectively; glass-EDS and 40Ar/39Ar age of S11 PAUP: Amato et al. (2018). The 
tephra age reported on top of each figure panel is the weighted mean of the 40Ar/39Ar ages indicated in the 
respective panel. 40Ar/39Ar ages are recalculated relatively to an age of 1.1891 Ma for the Alder Creek sanidine 
monitor standard (Niespolo et al., 2017), with the uncertainty expressed at 2s. 
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Figure 8. Total alkali versus silica classification diagram after Le Bas et al. (1986) and representative bi-plots 
for the tephra TF-85 (a), TF-117 (b), and TF-118 (c) from the F4-F5 record compared with their proximal or 
distal counterparts. Data source: glass-WDS and 40Ar/39Ar age of Villa Senni proximal units: (Marra et al., 
2009, 2019); glass-WDS and 40Ar/39Ar age of Villa Senni distal (PAG-t4): (Giaccio et al., 2012a); glass-WDS 
and 40Ar/39Ar age Pozzolane Nere fallout: (glass-WDS): (Marra et al., 2009); glass-WDS and 40Ar/39Ar age 
Fontana Ranuccio 2 (glass-WDS): (Pereira et al., 2018). The tephra age reported on top of each figure panel is 
the weighted mean of the 40Ar/39Ar ages indicated in the respective panel. 40Ar/39Ar ages are recalculated  
 

 
Figure 9. Total alkali versus silica classification diagram after Le Bas et al. (1986) and representative bi-plots 
for the tephra TF-62 (a) and TF-126 (b) of the F4-F5 succession compared with their proximal counterparts. 
TF-126 is also compared with some geochronologically compatible but geochemically different tephra R99-
30C (Tiber River successions), OH-DP 1733 (Lake Ohrid) and MOL 13 (Bojano Basin). Data source: glass-
WDS of Tufo Giallo di Sacrofano and Castel Broco: this study; 40Ar/39Ar age of Tufo Giallo di Sacrofano: 
Sottili et al. (2010); glass-WDS and 40Ar/39Ar age of R94-30C: this study and Marra et al. (2016) respectively; 
glass-WDS of OH-DP 1733: Leicher et al. (in review); glass-WDS of MOL 13: Amato et al. (2014). The tephra 
age reported on top of each figure panel is the weighted mean of the 40Ar/39Ar ages indicated in the respective 
panel. 40Ar/39Ar ages are recalculated relatively to an age of 1.1891 Ma for the Alder Creek sanidine monitor 
standard (Niespolo et al., 2017), with the uncertainty expressed at 2s. 
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Figure 10. Detailed proxy and tephra correlation of the F1-F3 record with the corresponding interval in core 
F4-F5. The two tephra records are merged for a composite F1-F3/F4-F5 tephra record. Note that tephra found 
only in F1-F3 or F4-F5 are transferred from one to the other via climatostratigraphic positions. 
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Figure 11. Composite F1-F3/F4-F5 tephra record. References: a Mannella et al. (2019 and references therein); 
b Petrosino et al. (2016) c Amato et al. (2018); d De Vivo et al.. (2001); e Sottili et al. (2010); f Marra et al. 
(2009); g Marra et al. (2019); h Giaccio et al. (2012); i Pereira et al. (2018); j This study. 40Ar/39Ar ages are 
recalculated relatively to an age of 1.1891 Ma for the Alder Creek sanidine monitor standard (Niespolo et al., 
2017), with the uncertainty expressed at 2s. 
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Figure 12. Preliminary age model for the composite F1-F3/F4-F5 tephra and F4-F5 Ca and palaeomagnetic 
records. The Fucino calcium record is compared with the sea surface temperature (SST) record from the SW 
Iberian Margin core MD01-2444/43 (dark red, Martrat et al., 2007) and core U1385 (red Rodrigues et al., 
2017). The boundaries of the marine isotope stages (MIS) Iberian Margin record and are projected in the 
Fucino record along the intercept points of the yellow/blue bars with the dashed green line, which is the linear 
interpolation between the mid-point of the tephra ages reported in Figure 9. The ages of Fucino tephras (dashed 
pink lines) are in turn projected in the time-scale of the Iberian Margin SST records, that are based on their 
own age models (Martrat et al., 2007; Rodrigues et al., 2011). The interceptions of the orange bars with the 
dashed green line also provide an age estimation for the Laschamp, Blake and Iceland Basin geomagnetic 
excursions, as inferred from the preliminary  palaeomagnetic data. 
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Table 1: Analysed tephra layers from core F4-F5.  

Fucino 
tephra 

 Sampling 
code 

 Bottom 
mcd  

 Thickness 
(cm) 

 Main lithological features  Source  
      

TF-4  F5-8  
77-93  10.57  15.50  

Darkish coarse ash made of dense blackish porphyritic scoria including 
crystals of leucite, pyroxene and dark mica, also occurring as abundant 
loose clasts. Accessory lithic made of lava and holocrystalline clasts also 
occur. 

 
Colli 

Albani 

 

TF-5  F5-8  
148-154  11.13  ~6*  

Darkish coarse ash made of dense blackish porphyritic scoria including 
crystals of leucite, pyroxene and dark mica, also occurring as abundant lose 
clasts. Accessory lithic made of lava and holocrystalline clast also occur. 

 
Colli 

Albani 

 

TF-7  F5-10  
147-149  14.14  2.00  

Greyish medium ash made of whitish-transparent micro-pumices associated 
with dense brownish glass shards with abundant lose crystals of large 
sanidine and black mica.  

 
Ischia 

 

TF-8  F5-12  
90-95  17.15  4.50  

Darkish ash made of blackish poorly vesicular scoria associated to scarce 
crystals of leucite and clinopyroxene.  

 Colli 
Albani 

 

TF-12  F5-15  
90-91  21.53  1.00  

Greyish to dark yellow, fine grained ash with whitish-transparent 
micropumices and glass shards. Stretched/elongated vesicles, only very few 
loose crystals of sanidine, black mica and pyroxene. 

 Campi 
Flegrei-

CVZ 

 

TF-17  F5-20  
89-91  29.64  2.00  

Fine to coarse grained, greyish ash with 1) greyish dark vesicular scoria; 2) 
brownish and transparent glass shards and micropumice; 3) coarse, 
(rounded) whitish and greyish pumice, with loose sanidine, clinopyroxene, 
and amphibole crystals 

 
Campi 

Flegrei-
CVZ 

 

TF-62  F4-39  
90-100  60,60  10.00  

Darkish coarse ash consisting of 1) greyish dark vesicular scoria; 2) 
brownish and transparent glass shards and micropumice; 3) coarse, 
(rounded) whitish and greyish pumice, with loose sanidine, clinopyroxene, 
and amphibole crystals. 

 

Sabatini 

 

TF-85  F5-49  
74-88  80.52  13.25  

Darkish medium-coarse ash made of both black porphyritic leucite-bearing 
scoriae and aphyric highly vesicular black scoriae, along with abundant 
crystals of leucite and dark mica and lithics. Toward the top, the ash 
becomes finer.  

 
Colli 

Albani 

 

TF-
117  F5-57  

0-7  95.13  7.00  

Darkish fine ash made of black porphyritic leucite-bearing scoriae 
associated with free crystals of leucite and lithics. Toward the top, the 
sediment evolves into a coarse ash made of blackish vesicular porphyritic 
scoriae along with leucite and lithics. 

 
Colli 

Albani 

 

TF-
118  F5-57  

16-23  95.29  7.50  
Darkish fine ash made of black porphyritic scoriae along with abundant 
free crystals of leucite and minor lithics. 

 Colli 
Albani 

 

TF-
126  F5-58 64-

66  97.24  2.00  

Light-grey medium ash made of highly vesicular white pumices associated 
with crystals of sanidine, plagioclase, dark mica and opaques and glass 
shards and minor lithics. Toward the top, the sediment turns to a dark grey-
blackish medium ash. 

 

Vulsini 

 

*Base of tephra inside of the core-catcher, not in composite depth.  
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Supplementary materials 
 
SD1: Full data set of the tephra glass major element composition (WDS-EMPA).  
 
SD2: Full data set of the 40Ar/39Ar dating. 
 
 

 
Figure S1. Wavelet analysis of the gamma ray dataset from F4 borehole. The white shading indicates areas 
outside the cone of influence that should be taken with care. Red colours indicate strong cyclicity, and blue 
colours no cyclic behaviour of the data. The bold line represents the results of a significance test, for details 
see Gouhier et al. (2018) and the appended R script. 
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