524 research outputs found

    The evolution of the actin binding NET superfamily.

    Get PDF
    This is the final version of the article. Available from Frontiers Media via the DOI in this record.The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species

    The Exocyst Complex in Health and Disease

    Get PDF
    Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease

    Automatic extraction of actin networks in plants

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Public Library of Science via the DOI in this recordData Availability: The authors confirm that all data underlying the findings are fully available without restriction. The complete code for this paper is available on a GitHub repository at https://github.com/JordanHembrow5/DRAGoN.The actin cytoskeleton is essential in eukaryotes, not least in the plant kingdom where it plays key roles in cell expansion, cell division, environmental responses and pathogen defence. Yet, the precise structure-function relationships of properties of the actin network in plants are still to be unravelled, including details of how the network configuration depends upon cell type, tissue type and developmental stage. Part of the problem lies in the difficulty of extracting high-quality, quantitative measures of actin network features from microscopy data. To address this problem, we have developed DRAGoN, a novel image analysis algorithm that can automatically extract the actin network across a range of cell types, providing seventeen different quantitative measures that describe the network at a local level. Using this algorithm, we then studied a number of cases in Arabidopsis thaliana, including several different tissues, a variety of actin-affected mutants, and cells responding to powdery mildew. In many cases we found statistically-significant differences in actin network properties. In addition to these results, our algorithm is designed to be easily adaptable to other tissues, mutants and plants, and so will be a valuable asset for the study and future biological engineering of the actin cytoskeleton in globally-important crops.Biotechnology and Biological Sciences Research Council (BBSRC)Wellcome TrustMedical Research Council (MRC

    Organelle-targeted biosensors reveal distinct oxidative events during pattern-triggered immune responses.

    Get PDF
    This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this recordReactive oxygen species are produced in response to pathogens and pathogen-associated molecular patterns, as exemplified by the rapid extracellular oxidative burst dependent on the NADPH oxidase isoform RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) in Arabidopsis (Arabidopsis thaliana). We used the H2O2 biosensor roGFP2-Orp1 and the glutathione redox state biosensor GRX1-roGFP2 targeted to various organelles to reveal unsuspected oxidative events during the pattern-triggered immune response to flagellin (flg22) and after inoculation with Pseudomonas syringae. roGFP2-Orp1 was oxidised in a biphasic manner one hour and six hours after treatment, with a more intense and faster response in the cytosol compared to chloroplasts, mitochondria, and peroxisomes. Peroxisomal and cytosolic GRX1-roGFP2 were also oxidised in a biphasic manner. Interestingly, our results suggested that bacterial effectors partially suppress the second phase of roGFP2-Orp1 oxidation in the cytosol. Pharmacological and genetic analyses indicated that the pathogen-associated molecular pattern-induced cytosolic oxidation required the BRI1-ASSOCIATED RECEPTOR KINASE (BAK1) and BOTRYTIS-INDUCED KINASE1 (BIK1) signalling components involved in the immune response but was largely independent of NADPH oxidases RBOHD and RESPIRATORY BURST OXIDASE HOMOLOGUE F (RBOHF) and apoplastic peroxidases PEROXIDASE 33 (PRX33) and PEROXIDASE 34 (PRX34). The initial apoplastic oxidative burst measured with luminol was followed by a second oxidation burst, both of which preceded the two waves of cytosolic oxidation. In contrast to the cytosolic oxidation, these bursts were RBOHD-dependent. Our results reveal complex oxidative sources and dynamics during the pattern-triggered immune response, including that cytosolic oxidation is largely independent of the preceding extracellular oxidation events.Biotechnology & Biological Sciences Research Council (BBSRC

    RBOHF activates stomatal immunity by modulating both reactive oxygen species and apoplastic pH dynamics in Arabidopsis

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordStomatal defences are important for plants to prevent pathogen entry and further colonisation of leaves. Apoplastic reactive oxygen species (ROS) generated by NADPH oxidases and apoplastic peroxidases play an important role in activating stomatal closure upon perception of bacteria. However, downstream events, particularly the factors influencing cytosolic hydrogen peroxide (H2 O2 ) signatures in guard cells are poorly understood. We used the H2 O2 sensor roGFP2-Orp1 and a ROS-specific fluorescein probe to study intracellular oxidative events during stomatal immune response using Arabidopsis mutants involved in the apoplastic ROS burst. Surprisingly, the NADPH oxidase mutant rbohF showed over-oxidation of roGFP2-Orp1 by a pathogen-associated molecular pattern (PAMP) in guard cells. However, stomatal closure was not tightly correlated with high roGFP2-Orp1 oxidation. In contrast, RBOHF was necessary for PAMP-mediated ROS production measured by a fluorescein-based probe in guard cells. Unlike previous reports, the rbohF mutant, but not rbohD, was impaired in PAMP-triggered stomatal closure resulting in defects in stomatal defences against bacteria. Interestingly, RBOHF also participated in PAMP-induced apoplastic alkalinisation. The rbohF mutants were also partly impaired in H2 O2 -mediated stomatal closure at 100 μm while higher H2 O2 concentration up to 1 mm did not promote stomatal closure in wild-type plants. Our results provide novel insights on the interplay between apoplastic and cytosolic ROS dynamics and highlight the importance of RBOHF in plant immunity.Biotechnology and Biological Sciences Research Council (BBSRC

    Comparison of the impact of two key fungal signalling pathways on Zymoseptoria tritici infection reveals divergent contribution to invasive growth through distinct regulation of infection-associated genes

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: RNA sequencing reads have been deposited on the European Nucleotide Archive (ENA) at www.ebi.ac.uk/ena under the accession number PRJEB58154.The lifecycle of Zymoseptoria tritici requires a carefully regulated asymptomatic phase within the wheat leaf following penetration of the mesophyll via stomata. Here we compare the roles in this process of two key fungal signalling pathways, mutants of which were identified through forward genetics due to their avirulence on wheat. Whole-genome resequencing of avirulent Z. tritici T-DNA transformants identified disruptive mutations in ZtBCK1 from the kinase cascade of the cell wall integrity (CWI) pathway, and the adenylate cyclase gene ZtCYR1. Targeted deletion of these genes abolished the pathogenicity of the fungus and led to similar in vitro phenotypes to those associated with disruption of putative downstream kinases, both supporting previous studies and confirming the importance of these pathways in virulence. RNA sequencing was used to investigate the effect of ZtBCK1 and ZtCYR1 deletion on gene expression in both the pathogen and host during infection. ZtBCK1 was found to be required for the adaptation to the host environment, controlling expression of infection-associated secreted proteins, including known virulence factors. Meanwhile, ZtCYR1 is implicated in controlling the switch to necrotrophy, regulating expression of effectors associated with this transition. This represents the first study to compare the influence of CWI and cAMP signalling on in planta transcription of a fungal plant pathogen, providing insights into their differential regulation of candidate effectors during invasive growth.Biotechnology and Biological Sciences Research Council (BBSRC)Wellcome Trus

    Distinct roles for different autophagy-associated genes in the virulence of the fungal wheat pathogen Zymoseptoria tritici

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record. The fungal wheat pathogen Zymoseptoria tritici causes major crop losses as the causal agent of the disease Septoria tritici blotch. The infection cycle of Z. tritici displays two distinct phases, beginning with an extended symptomless phase of 1–2 weeks, before the fungus induces host cell death and tissue collapse in the leaf. Recent evidence suggests that the fungus uses little host-derived nutrition during asymptomatic colonisation, raising questions as to the sources of energy required for this initial growth phase. Autophagy is crucial for the pathogenicity of other fungal plant pathogens through its roles in supporting cellular differentiation and growth under starvation. Here we characterised the contributions of the autophagy genes ZtATG1 and ZtATG8 to the development and virulence of Z. tritici. Deletion of ZtATG1 led to inhibition of autophagy but had no impact on starvation-induced hyphal differentiation or virulence, suggesting that autophagy is not required for Z. tritici pathogenicity. Contrastingly, ZtATG8 deletion delayed the transition to necrotrophic growth, despite having no influence on filamentous growth under starvation, pointing to an autophagy-independent role of ZtATG8 during Z. tritici infection. To our knowledge, this study represents the first to find autophagy not to contribute to the virulence of a fungal plant pathogen, and reveals novel roles for different autophagy-associated proteins in Z. tritici.Biotechnology and Biological Sciences Research Council (BBSRC

    Preventing childhood obesity, phase II feasibility study focusing on South Asians: BEACHeS

    Get PDF
    Objective: To assess feasibility and acceptability of a multifaceted, culturally appropriate intervention for preventing obesity in South Asian children, and to obtain data to inform sample size for a definitive trial. Design: Phase II feasibility study of a complex intervention. Setting: 8 primary schools in inner city Birmingham, UK, within populations that are predominantly South Asian. Participants: 1090 children aged 6–8 years took part in the intervention. 571 (85.9% from South Asian background) underwent baseline measures. 85.5% (n=488) were followed up 2 years later. Interventions: The 1-year intervention consisted of school-based and family-based activities, targeting dietary and physical activity behaviours. The intervention was modified and refined throughout the period of delivery. Main outcome measures: Acceptability and feasibility of the intervention and of measurements required to assess outcomes in a definitive trial. The difference in body mass index (BMI) z-score between arms was used to inform sample size calculations for a definitive trial. Results: Some intervention components (increasing school physical activity opportunities, family cooking skills workshops, signposting of local leisure facilities and attending day event at a football club) were feasible and acceptable. Other components were acceptable, but not feasible. Promoting walking groups was neither acceptable nor feasible. At follow-up, children in the intervention compared with the control group were less likely to be obese (OR 0.41; 0.19 to 0.89), and had lower adjusted BMI z-score (−0.15 kg/m2; 95% CI −0.27 to −0.03). Conclusions: The feasibility study informed components for an intervention programme. The favourable direction of outcome for weight status in the intervention group supports the need for a definitive trial. A cluster randomised controlled trial is now underway to assess the clinical and cost-effectiveness of the intervention. Trial registration number: ISRCTN51016370

    The challenges faced in the design, conduct and analysis of surgical randomised controlled trials

    Get PDF
    Randomised evaluations of surgical interventions are rare; some interventions have been widely adopted without rigorous evaluation. Unlike other medical areas, the randomised controlled trial (RCT) design has not become the default study design for the evaluation of surgical interventions. Surgical trials are difficult to successfully undertake and pose particular practical and methodological challenges. However, RCTs have played a role in the assessment of surgical innovations and there is scope and need for greater use. This article will consider the design, conduct and analysis of an RCT of a surgical intervention. The issues will be reviewed under three headings: the timing of the evaluation, defining the research question and trial design issues. Recommendations on the conduct of future surgical RCTs are made. Collaboration between research and surgical communities is needed to address the distinct issues raised by the assessmentof surgical interventions and enable the conduct of appropriate and well-designed trials.The Health Services Research Unit is funded by the Scottish Government Health DirectoratesPeer reviewedPublisher PD
    corecore