18,086 research outputs found

    Splittings and C-complexes

    Full text link
    The intersection pattern of the translates of the limit set of a quasi-convex subgroup of a hyperbolic group can be coded in a natural incidence graph, which suggests connections with the splittings of the ambient group. A similar incidence graph exists for any subgroup of a group. We show that the disconnectedness of this graph for codimension one subgroups leads to splittings. We also reprove some results of Peter Kropholler on splittings of groups over malnormal subgroups and variants of them.Comment: v2 final version incorporating referee's comment

    Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river

    Get PDF
    We used high-frequency in situ measurements of nitrate (NO3-) and dissolved oxygen (DO) from the springfed Ichetucknee River, Florida, to derive multiple independent estimates of assimilatory nitrogen (N) demand, and to evaluate the short-term dependence of heterotrophic assimilation and dissimilation (e.g., denitrification) on gross primary productivity (GPP). Autotrophic N assimilation estimates derived from diel DO variability and GPP stoichiometry agreed closely with estimates based on integration of diel variation in NO3- concentration, although the correspondence of these metrics depended on the method used to estimate NO 3- baselines. In addition, day-to-day changes in nocturnal NO3- concentration maxima were strongly negatively correlated with day-to-day changes in GPP. Diel temperature variation in the Ichetucknee River indicated that this pattern could not be explained by hydrologic dispersion, while relationships between N assimilation and O 2 production at hourly intervals indicated minimal physiological lags. The estimated magnitude of heterotrophic assimilation was small, indicating that the relationship between changes in GPP and changes in nocturnal 3- maxima reflects sensitivity of denitrification to variation in exudation of labile organic matter by primary producers. We estimate that ~ 35% of denitrification may be fueled by the previous day's photosynthesis; this result is consistent with the broader hypothesis that the magnitude of autochthonous production in aquatic systems influences the fate of N via both direct and indirect mechanisms. © 2010, by the American Society of Limnology and Oceanography, Inc

    Strength-endurance training reduces the hamstrings strength decline following simulated football competition in female players

    Get PDF
    Hamstring strains are the most common injury in multiple sprint sports, with inadequate eccentric hamstring strength and fatigue identified as important risk factors. Resistance training interventions aimed at reducing injury risk typically focus on the development of maximum strength, while little is known about the impact of training on hamstring fatigue resistance. The present study compared the effects of strength endurance (SE) with a strength intervention (S) on the eccentric hamstring strength decline induced by a simulated soccer match. Twenty-one female soccer players were randomly assigned to a S group (n = 10) or a SE group (n = 11). Hamstrings and quadriceps isokinetic concentric and eccentric peak torque (PT) were assessed at 120°.s-1 and hamstrings-to-quadriceps ratio (HEcc:QCon) calculated, pre- and immediately post a 90-min simulated match (BEAST90). This was repeated following a 7-week intervention of either three to five sets of 6RM leg curl and stiff-leg deadlift with 3-min inter-set rest (S), or the same exercises performed using three sets of 12–20 RM with 45–90 s inter-set rest (SE). At baseline, the simulated match led to significant declines in hamstrings eccentric peak torque (EccPT) in both groups in both dominant (D) and non-dominant (ND) legs [SE: (D: −15.5, ND: −15.6%), P = 0.001 to 0.016; S: (D: −12.3%, ND: −15.5%), P = 0.001 to 0.018]. After the 7-week intervention, we observed a group*intervention*match interaction such that there was no significant decline in EccPT in the SE group following the simulated match (D: 5.3%, ND: 2.0%), but there remained significant declines in the S group (D: −14.2%, ND: −15.5%, P = 0.018–0.001). Similarly, in the SE group, there was a significant decrease in the HEcc:QCon in D before (−14.2%, P = 0.007), but not after the training intervention, whereas declines were observed in the S group both at baseline, and following the intervention (D: −13.9%, ND: −15.6%, P = 0.045). These results demonstrate that SE training can reduce the magnitude of the EccPT decline observed during soccer competition. As inadequate eccentric strength and fatigue are both risk factors for hamstring injury, SE training should be considered along with the development of peak eccentric strength, as a component of programs aimed at reducing injury risk in multiple-sprint sports

    Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes

    Get PDF
    Longitudinal and diel measurements of dual isotope composition (δ<sup>15</sup>N and δ<sup>18</sup>O) in nitrate (NO<inf>3</inf>-N) were made in the Ichetucknee River, a large (∼8m<sup>3</sup> s <sup>-1</sup>), entirely spring-fed river in North Florida, to determine whether isotopic variation can deconvolve assimilatory and dissimilatory removal. Comparing nitrate concentrations and isotope composition during the day and night we predicted (1) daytime declines in total fractionation due to low assimilatory fractionation and (2) diurnal variation in dual isotope coupling between 1:1 (assimilation) and 2:1 (denitrification). Five daytime longitudinal transects comprising 10 sampling stations showed consistent NO<inf>3</inf>-N removal (25-35% of inputs) and modest fractionation (<sup>15</sup>ε <inf>total</inf> between -2 and -6‰, enriching the residual nitrate pool). Lower fractionation (by ∼1‰) during two nighttime transects, suggests higher fractionation due to assimilation than denitrification. Total fractionation was significantly negatively associated with discharge, input [NO<inf>3</inf>-N], N mass removal, and fractional water loss. Despite well-constrained mass balance estimates that denitrification dominated total N removal, isotope coupling was consistently 1:1, both for longitudinal and diel sampling. Hourly samples on two dates at the downstream location showed significant diel variation in concentration ([NO<inf>3</inf>-N] amplitude = 60 to 90 μg N L<sup>-1</sup>) and isotope composition (δ<sup>15</sup>N amplitude = -0.7‰ to -1.6‰). Total fractionation differed between day and night only on one date but estimated assimilatory fractionation assuming constant denitrification was highly variable and implausibly large (for N, <sup>15</sup>ε = -2 to -25‰), suggesting that fractionation and removal due to denitrification is not diurnally constant. Pronounced counterclockwise hysteresis in the relationship between [NO<inf>3</inf>-N] and δ<sup>15</sup>N suggests diel variation in N isotope dynamics. Together, low fractionation, isotope versus concentration hysteresis, and consistent 1:1 isotope coupling suggests that denitrification is controlled by NO <inf>3</inf><sup>-</sup> diffusion into the benthic sediments, the length of which is mediated by riverine oxygen dynamics. While using dual isotope behavior to deconvolve removal pathways was not possible, isotope measurements did yield valuable information about riverine N cycling and transformations. Copyright © 2012 by the American Geophysical Union

    Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer

    Get PDF
    Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationships between O2 and δ15N NO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N:18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15N NO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs. © Author(s) 2012

    Algal blooms and the nitrogen-enrichment hypothesis in Florida springs: evidence, alternatives, and adaptive management.

    Get PDF
    Contradictions between system-specific evidence and broader paradigms to explain ecosystem behavior present a challenge for natural resource management. In Florida (U.S.A.) springs, increasing nitrate (NO3-) concentrations have been implicated as the cause of algal overgrowth via alleviation of N-limitation. As such, policy and management efforts have centered heavily on reduction of nitrogen (N) loads. While the N-limitation hypothesis appears well founded on broadly supported aquatic eutrophication models, several observations from Florida springs are inconsistent with this hypothesis in its present simplified form. First, NO3- concentration is not correlated with algal abundance across the broad population of springs and is weakly negatively correlated with primary productivity. Second, within individual spring runs, algal mats are largely confined to the headwater reaches within 250 m of spring vents, while elevated NO3- concentrations persist for several kilometers or more. Third, historic observations suggest that establishment of macroalgal mats often lags behind observed increases in NO3- by more than a decade. Fourth, although microcosm experiments indicate high thresholds for N-limitation of algae, experiments in situ have demonstrated only minimal response to N enrichment. These muted responses may reflect large nutrient fluxes in springs, which were sufficient to satisfy present demand even at historic concentrations. New analyses of existing data indicate that dissolved oxygen (DO) has declined dramatically in many Florida springs over the past 30 years, and that DO and grazer abundance are better predictors of algal abundance in springs than are nutrient concentrations. Although a precautionary N-reduction strategy for Florida springs is warranted given demonstrable effects of nutrient enrichment in a broad suite of aquatic systems worldwide, the DO-grazer hypothesis and other potential mechanisms merit increased scientific scrutiny. This case study illustrates the importance of an adaptive approach that explicitly evaluates paradigms as hypotheses and actively seeks alternative explanations

    Sorafenib dose escalation is not uniformly associated with blood pressure elevations in normotensive patients with advanced malignancies.

    Get PDF
    Hypertension after treatment with vascular endothelial growth factor (VEGF) receptor inhibitors is associated with superior treatment outcomes for advanced cancer patients. To determine whether increased sorafenib doses cause incremental increases in blood pressure (BP), we measured 12-h ambulatory BP in 41 normotensive advanced solid tumor patients in a randomized dose-escalation study. After 7 days' treatment (400 mg b.i.d.), mean diastolic BP (DBP) increased in both study groups. After dose escalation, group A (400 mg t.i.d.) had marginally significant further increase in 12-h mean DBP (P = 0.053), but group B (600 mg b.i.d.) did not achieve statistically significant increases (P = 0.25). Within groups, individuals varied in BP response to sorafenib dose escalation, but these differences did not correlate with changes in steady-state plasma sorafenib concentrations. These findings in normotensive patients suggest BP is a complex pharmacodynamic biomarker of VEGF inhibition. Patients have intrinsic differences in sensitivity to sorafenib's BP-elevating effects

    Novel Characteristics of Valveless Pumping

    Get PDF
    This study investigates the occurrence of valveless pumping in a fluidfilled system consisting of two open tanks connected by an elastic tube. We show that directional flow can be achieved by introducing a periodic pinching applied at an asymmetrical location along the tube, and that the flow direction depends on the pumping frequency. We propose a relation between wave propagation velocity, tube length, and resonance frequencies associated with shifts in the pumping direction using numerical simulations. The eigenfrequencies of the system are estimated from the linearized system, and we show that these eigenfrequencies constitute the resonance frequencies and the horizontal slope frequencies of the system; 'horizontal slope frequency' being a new concept. A simple model is suggested, explaining the effect of the gravity driven part of the oscillation observed in response to the tank and tube diameter changes. Results are partly compared with experimental findings.Art. no. 22450

    By hook or by crook? Morphometry, competition and cooperation in rodent sperm

    Get PDF
    Background Sperm design varies enormously across species and sperm competition is thought to be a major factor influencing this variation. However, the functional significance of many sperm traits is still poorly understood. The sperm of most murid rodents are characterised by an apical hook of the sperm head that varies markedly in extent across species. In the European woodmouse Apodemus sylvaticus (Muridae), the highly reflected apical hook of sperm is used to form sperm groups, or “trains,” which exhibited increased swimming velocity and thrusting force compared to individual sperm. Methodology/Principal Findings Here we use a comparative study of murine rodent sperm and demonstrate that the apical hook and sperm cooperation are likely to be general adaptations to sperm competition in rodents. We found that species with relatively larger testes, and therefore more intense sperm competition, have a longer, more reflected apical sperm hook. In addition, we show that sperm groups also occur in rodents other than the European woodmouse. Conclusions Our results suggest that in rodents sperm cooperation is more widespread than assumed so far and highlight the importance of diploid versus haploid selection in the evolution of sperm design and function
    corecore