18 research outputs found

    Application of the use of high-throughput technologies to the determination of protein structures of bacterial and viral pathogens

    No full text
    International audienceThe Structural Proteomics In Europe (SPINE) programme is aimed at the development and implementation of high-throughput technologies for the efficient structure determination of proteins of biomedical importance, such as those of bacterial and viral pathogens linked to human health. Despite the challenging nature of some of these targets, 175 novel pathogen protein structures (approximately 220 including complexes) have been determined to date. Here the impact of several technologies on the structural determination of proteins from human pathogens is illustrated with selected examples, including the parallel expression of multiple constructs, the use of standardized refolding protocols and optimized crystallization screens

    Application of the use of high-throughput technologies to the determination of protein structures of bacterial and viral pathogens (vol 62, pg 1196, 2006)

    Get PDF
    The Structural Proteomics In Europe (SPINE) programme is aimed at the development and implementation of high-throughput technologies for the efficient structure determination of proteins of biomedical importance, such as those of bacterial and viral pathogens linked to human health. Despite the challenging nature of some of these targets, 175 novel pathogen protein structures (approximately 220 including complexes) have been determined to date. Here the impact of several technologies on the structural determination of proteins from human pathogens is illustrated with selected examples, including the parallel expression of multiple constructs, the use of standardized refolding protocols and optimized crystallization screens

    The three-legged stool of understanding metabolism: integrating metabolomics with biochemical genetics and computational modeling

    No full text

    Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount

    No full text
    Field EK, Sczyrba A, Lyman AE, et al. Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. The ISME journal. 2015;9(4):857-870.The Zetaproteobacteria are a candidate class of marine iron-oxidizing bacteria that are typically found in high iron environments such as hydrothermal vent sites. As much remains unknown about these organisms due to difficulties in cultivation, single-cell genomics was used to learn more about this elusive group at Loihi Seamount. Comparative genomics of 23 phylogenetically diverse single amplified genomes (SAGs) and two isolates indicate niche specialization among the Zetaproteobacteria may be largely due to oxygen tolerance and nitrogen transformation capabilities. Only Form II ribulose 1,5-bisphosphate carboxylase (RubisCO) genes were found in the SAGs, suggesting that some of the uncultivated Zetaproteobacteria may be adapted to low oxygen and/or high carbon dioxide concentrations. There is also genomic evidence of oxygen-tolerant cytochrome c oxidases and oxidative stress-related genes, indicating that others may be exposed to higher oxygen conditions. The Zetaproteobacteria also have the genomic potential for acquiring nitrogen from numerous sources including ammonium, nitrate, organic compounds, and nitrogen gas. Two types of molybdopterin oxidoreductase genes were found in the SAGs, indicating that those found in the isolates, thought to be involved in iron oxidation, are not consistent among all the Zetaproteobacteria. However, a novel cluster of redox-related genes was found to be conserved in 10 SAGs as well as in the isolates warranting further investigation. These results were used to isolate a novel iron-oxidizing Zetaproteobacteria. Physiological studies and genomic analysis of this isolate were able to support many of the findings from SAG analyses demonstrating the value of these data for designing future enrichment strategies

    Flavin Reductase Contributes to Pneumococcal Virulence by Protecting from Oxidative Stress and Mediating Adhesion and Elicits Protection Against Pneumococcal Challenge.

    Get PDF
    Pneumococcal flavin reductase (FlaR) is known to be cell-wall associated and possess age dependent antigenicity in children. This study aimed at characterizing FlaR and elucidating its involvement in pneumococcal physiology and virulence. Bioinformatic analysis of FlaR sequence identified three-conserved cysteine residues, suggesting a transition metal-binding capacity. Recombinant FlaR (rFlaR) bound Fe2+ and exhibited FAD-dependent NADP-reductase activity, which increased in the presence of cysteine or excess Fe2+ and inhibited by divalent-chelating agents. flaR mutant was highly susceptible to H2O2 compared to its wild type (WT) and complemented strains, suggesting a role for FlaR in pneumococcal oxidative stress resistance. Additionally, flaR mutant demonstrated significantly decreased mice mortality following intraperitoneal infection. Interestingly, lack of FlaR did not affect the extent of phagocytosis by primary mouse peritoneal macrophages but reduced adhesion to A549 cells compared to the WT and complemented strains. Noteworthy are the findings that immunization with rFlaR elicited protection in mice against intraperitoneal lethal challenge and anti-FlaR antisera neutralized bacterial virulence. Taken together, FlaR's roles in pneumococcal physiology and virulence, combined with its lack of significant homology to human proteins, point towards rFlaR as a vaccine candidate
    corecore