160 research outputs found

    Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest

    Get PDF
    Cyclic population dynamics of small mammals are not restricted to the boreal and arctic zones of Eurasia and North America, but long-term data series from lower latitudes are still less common. We demonstrated here the presence of periodic oscillations in small mammal populations in eastern Poland using 22-year (1986–2007) trapping data from marginal meadow and river valley grasslands located in the extensive temperate woodland of BiaƂowieĆŒa Primeval Forest. The two most common species inhabiting meadows and river valleys, root vole Microtus oeconomus and common shrew Sorex araneus, exhibited synchronous periodic changes, characterised by a 3-year time lag as indicated by an autocorrelation function. Moreover, the cycles of these two species were synchronous within both habitats. Population dynamics of the striped field mouse Apodemus agrarius was not cyclic. However, this species regularly reached maximum density 1 year before the synchronized peak of root voles and common shrews, which may suggest the existence of interspecific competition. Dynamics of all three species was dominated by direct density-dependent process, whereas delayed density dependent feedback was significant only in the root vole and common shrew. Climatic factors acting in winter and spring (affecting mainly survival and initial reproduction rates) were more important than those acting in summer and autumn and affected significantly only the common shrew. High temperatures in winter and spring had positive effects on autumn-to-autumn changes in abundance of this species, whereas deep snow in combination with high rainfall in spring negatively affected population increase rates in common shrew

    Ballistic impacts on an anatomically correct synthetic skull with a surrogate skin/soft tissue layer

    Get PDF
    The aim of this work was to further develop a synthetic model of ballistic head injury by the addition of skin and soft tissue layers to an anatomically correct polyurethane skull filled with gelatine 10% by mass. Six head models were impacted with 7.62 x 39 mm full metal jacket mild steel core (FMJ MSC) bullets with a mean velocity of 652 m/s. The impact events were filmed with high-speed cameras. The models were imaged pre- and post-impact using computed tomography. The models were assessed post impact by two experienced Home Office pathologists and the images assessed by an experienced military radiologist. The findings were scored against real injuries. The entry wounds, exit wounds and fracture patterns were scored positively, but the synthetic skin and soft tissue layer was felt to be too extendable. Further work is ongoing to address this

    Spatial and Temporal Variability of Macroinvertebrates in Spawning and Non-Spawning Habitats during a Salmon Run in Southeast Alaska

    Get PDF
    Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream

    Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation

    Get PDF
    T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses

    Gene Targeting Implicates Cdc42 GTPase in GPVI and Non-GPVI Mediated Platelet Filopodia Formation, Secretion and Aggregation

    Get PDF
    Background: Cdc42 and Rac1, members of the Rho family of small GTPases, play critical roles in actin cytoskeleton regulation. We have shown previously that Rac1 is involved in regulation of platelet secretion and aggregation. However, the role of Cdc42 in platelet activation remains controversial. This study was undertaken to better understand the role of Cdc42 in platelet activation. Methodology/Principal Findings: We utilized the Mx-cre;Cdc42 lox/lox inducible mice with transient Cdc42 deletion to investigate the involvement of Cdc42 in platelet function. The Cdc42-deficient mice exhibited a significantly reduced platelet count than the matching Cdc42 +/+ mice. Platelets isolated from Cdc42 2/2, as compared to Cdc42 +/+, mice exhibited (a) diminished phosphorylation of PAK1/2, an effector molecule of Cdc42, (b) inhibition of filopodia formation on immobilized CRP or fibrinogen, (c) inhibition of CRP- or thrombin-induced secretion of ATP and release of P-selectin, (d) inhibition of CRP, collagen or thrombin induced platelet aggregation, and (e) minimal phosphorylation of Akt upon stimulation with CRP or thrombin. The bleeding times were significantly prolonged in Cdc42 2/2 mice compared with Cdc42 +/+ mice. Conclusion/Significance: Our data demonstrate that Cdc42 is required for platelet filopodia formation, secretion an

    Automated authorship attribution using advanced signal classification techniques

    Get PDF
    In this paper, we develop two automated authorship attribution schemes, one based on Multiple Discriminant Analysis (MDA) and the other based on a Support Vector Machine (SVM). The classification features we exploit are based on word frequencies in the text. We adopt an approach of preprocessing each text by stripping it of all characters except a-z and space. This is in order to increase the portability of the software to different types of texts. We test the methodology on a corpus of undisputed English texts, and use leave-one-out cross validation to demonstrate classification accuracies in excess of 90%. We further test our methods on the Federalist Papers, which have a partly disputed authorship and a fair degree of scholarly consensus. And finally, we apply our methodology to the question of the authorship of the Letter to the Hebrews by comparing it against a number of original Greek texts of known authorship. These tests identify where some of the limitations lie, motivating a number of open questions for future work. An open source implementation of our methodology is freely available for use at https://github.com/matthewberryman/autho​r-detection.Maryam Ebrahimpour, Tālis J. PutniƆơ, Matthew J. Berryman, Andrew Allison, Brian W.-H. Ng, Derek Abbot

    Adaptation of cortical activity to sustained pressure stimulation on the fingertip

    Get PDF
    Background Tactile adaptation is a phenomenon of the sensory system that results in temporal desensitization after an exposure to sustained or repetitive tactile stimuli. Previous studies reported psychophysical and physiological adaptation where perceived intensity and mechanoreceptive afferent signals exponentially decreased during tactile adaptation. Along with these studies, we hypothesized that somatosensory cortical activity in the human brain also exponentially decreased during tactile adaptation. The present neuroimaging study specifically investigated temporal changes in the human cortical responses to sustained pressure stimuli mediated by slow-adapting type I afferents. Methods We applied pressure stimulation for up to 15 s to the right index fingertip in 21 healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. We analyzed cortical responses in terms of the degrees of cortical activation and inter-regional connectivity during sustained pressure stimulation. Results Our results revealed that the degrees of activation in the contralateral primary and secondary somatosensory cortices exponentially decreased over time and that intra- and inter-hemispheric inter-regional functional connectivity over the regions associated with tactile perception also linearly decreased or increased over time, during pressure stimulation. Conclusion These results indicate that cortical activity dynamically adapts to sustained pressure stimulation mediated by SA-I afferents, involving changes in the degrees of activation on the cortical regions for tactile perception as well as in inter-regional functional connectivity among them. We speculate that these adaptive cortical activity may represent an efficient cortical processing of tactile information.open

    Structural Perturbations to Population Skeletons: Transient Dynamics, Coexistence of Attractors and the Rarity of Chaos

    Get PDF
    Simple models of insect populations with non-overlapping generations have been instrumental in understanding the mechanisms behind population cycles, including wild (chaotic) fluctuations. The presence of deterministic chaos in natural populations, however, has never been unequivocally accepted. Recently, it has been proposed that the application of chaos control theory can be useful in unravelling the complexity observed in real population data. This approach is based on structural perturbations to simple population models (population skeletons). The mechanism behind such perturbations to control chaotic dynamics thus far is model dependent and constant (in size and direction) through time. In addition, the outcome of such structurally perturbed models is [almost] always equilibrium type, which fails to commensurate with the patterns observed in population data.We present a proportional feedback mechanism that is independent of model formulation and capable of perturbing population skeletons in an evolutionary way, as opposed to requiring constant feedbacks. We observe the same repertoire of patterns, from equilibrium states to non-chaotic aperiodic oscillations to chaotic behaviour, across different population models, in agreement with observations in real population data. Model outputs also indicate the existence of multiple attractors in some parameter regimes and this coexistence is found to depend on initial population densities or the duration of transient dynamics. Our results suggest that such a feedback mechanism may enable a better understanding of the regulatory processes in natural populations

    Shear behavior of DFDP-1 borehole samples from the Alpine Fault, New Zealand, under a wide range of experimental conditions

    Get PDF
    The Alpine Fault is a major plate-boundary fault zone that poses a major seismic hazard in southern New Zealand. The initial stage of the Deep Fault Drilling Project has provided sample material from the major lithological constituents of the Alpine Fault from two pilot boreholes. We use laboratory shearing experiments to show that the friction coefficient ” of fault-related rocks and their precursors varies between 0.38 and 0.80 depending on the lithology, presence of pore fluid, effective normal stress, and temperature. Under conditions appropriate for several kilometers depth on the Alpine Fault (100 MPa, 160 °C, fluid-saturated), a gouge sample located very near to the principal slip zone exhibits ” = 0.67, which is high compared with other major fault zones targeted by scientific drilling, and suggests the capacity for large shear stresses at depth. A consistent observation is that every major lithological unit tested exhibits positive and negative values of friction velocity dependence. Critical nucleation patch lengths estimated using representative values of the friction velocity-dependent parameter a−b and the critical slip distance D c , combined with previously documented elastic properties of the wall rock, may be as low as ~3 m. This small value, consistent with a seismic moment M o = ~4 × 1010 for an M w = ~1 earthquake, suggests that events of this size or larger are expected to occur as ordinary earthquakes and that slow or transient slip events are unlikely in the approximate depth range of 3–7 km
    • 

    corecore