64 research outputs found

    Deconstructing Insight: EEG Correlates of Insightful Problem Solving

    Get PDF
    Background: Cognitive insight phenomenon lies at the core of numerous discoveries. Behavioral research indicates four salient features of insightful problem solving: (i) mental impasse, followed by (ii) restructuring of the problem representation, which leads to (iii) a deeper understanding of the problem, and finally culminates in (iv) an “Aha!” feeling of suddenness and obviousness of the solution. However, until now no efforts have been made to investigate the neural mechanisms of these constituent features of insight in a unified framework. Methodology/Principal Findings: In an electroencephalographic study using verbal remote associate problems, we identified neural correlates of these four features of insightful problem solving. Hints were provided for unsolved problems or after mental impasse. Subjective ratings of the restructuring process and the feeling of suddenness were obtained on trial-by-trial basis. A negative correlation was found between these two ratings indicating that sudden insightful solutions, where restructuring is a key feature, involve automatic, subconscious recombination of information. Electroencephalogram signals were analyzed in the space×time×frequency domain with a nonparametric cluster randomization test. First, we found strong gamma band responses at parieto-occipital regions which we interpreted as (i) an adjustment of selective attention (leading to a mental impasse or to a correct solution depending on the gamma band power level) and (ii) encoding and retrieval processes for the emergence of spontaneous new solutions. Secondly, we observed an increased upper alpha band response in right temporal regions (suggesting active suppression of weakly activated solution relevant information) for initially unsuccessful trials that after hint presentation led to a correct solution. Finally, for trials with high restructuring, decreased alpha power (suggesting greater cortical excitation) was observed in right prefrontal area. Conclusions/Significance: Our results provide a first account of cognitive insight by dissociating its constituent components and potential neural correlates

    Genomic Organization and Expression Demonstrate Spatial and Temporal Hox Gene Colinearity in the Lophotrochozoan Capitella sp. I

    Get PDF
    Hox genes define regional identities along the anterior–posterior axis in many animals. In a number of species, Hox genes are clustered in the genome, and the relative order of genes corresponds with position of expression in the body. Previous Hox gene studies in lophotrochozoans have reported expression for only a subset of the Hox gene complement and/or lack detailed genomic organization information, limiting interpretations of spatial and temporal colinearity in this diverse animal clade. We studied expression and genomic organization of the single Hox gene complement in the segmented polychaete annelid Capitella sp. I. Total genome searches identified 11 Hox genes in Capitella, representing 11 distinct paralog groups thought to represent the ancestral lophotrochozoan complement. At least 8 of the 11 Capitella Hox genes are genomically linked in a single cluster, have the same transcriptional orientation, and lack interspersed non-Hox genes. Studying their expression by situ hybridization, we find that the 11 Capitella Hox genes generally exhibit spatial and temporal colinearity. With the exception of CapI-Post1, Capitella Hox genes are all expressed in broad ectodermal domains during larval development, consistent with providing positional information along the anterior–posterior axis. The anterior genes CapI-lab, CapI-pb, and CapI-Hox3 initiate expression prior to the appearance of segments, while more posterior genes appear at or soon after segments appear. Many of the Capitella Hox genes have either an anterior or posterior expression boundary coinciding with the thoracic–abdomen transition, a major body tagma boundary. Following metamorphosis, several expression patterns change, including appearance of distinct posterior boundaries and restriction to the central nervous system. Capitella Hox genes have maintained a clustered organization, are expressed in the canonical anterior–posterior order found in other metazoans, and exhibit spatial and temporal colinearity, reflecting Hox gene characteristics that likely existed in the protostome–deuterostome ancestor

    New CUORICINO Results On the Way to CUORE

    Get PDF
    CUORE is a 0.75 ton experiment to search for neutrinoless double beta decay of Te130 using 988 TeO2 bolometers. It aims at reaching a sensitivity on the effective neutrino mass of the order of few tens of meV. CUORICINO, a single CUORE tower running since 2003, plays an important role as a stand alone experiment and for developing the future CUORE setup. Present results already achieved and studies that are underway are here presented and discussed

    Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations

    Get PDF
    International audienceThe mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulation as a computational microscope allows investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy including sample preparation, measurement and analysis of force spectroscopy using AFM and its interpretation in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging of computational tools with experimental technique

    Mapping and Imaging the Aggressive Brain in Animals and Humans

    Get PDF

    Formation of rigid, non-flight forewings (elytra) of a beetle requires two major cuticular proteins

    Get PDF
    Citation: Arakane Y, Lomakin J, Gehrke SH, Hiromasa Y, Tomich JM, Muthukrishnan S, et al. (2012) Formation of Rigid, Non-Flight Forewings (Elytra) of a Beetle Requires Two Major Cuticular Proteins. PLoS Genet 8(4): e1002682. https://doi.org/10.1371/journal.pgen.1002682Insect cuticle is composed primarily of chitin and structural proteins. To study the function of structural cuticular proteins, we focused on the proteins present in elytra (modified forewings that become highly sclerotized and pigmented covers for the hindwings) of the red flour beetle, Tribolium castaneum. We identified two highly abundant proteins, TcCPR27 (10 kDa) and TcCPR18 (20 kDa), which are also present in pronotum and ventral abdominal cuticles. Both are members of the Rebers and Riddiford family of cuticular proteins and contain RR2 motifs. Transcripts for both genes dramatically increase in abundance at the pharate adult stage and then decline quickly thereafter. Injection of specific double-stranded RNAs for each gene into penultimate or last instar larvae had no effect on larval–larval, larval–pupal, or pupal–adult molting. The elytra of the resulting adults, however, were shorter, wrinkled, warped, fenestrated, and less rigid than those from control insects. TcCPR27-deficient insects could not fold their hindwings properly and died prematurely approximately one week after eclosion, probably because of dehydration. TcCPR18-deficient insects exhibited a similar but less dramatic phenotype. Immunolocalization studies confirmed the presence of TcCPR27 in the elytral cuticle. These results demonstrate that TcCPR27 and TcCPR18 are major structural proteins in the rigid elytral, dorsal thoracic, and ventral abdominal cuticles of the red flour beetle, and that both proteins are required for morphogenesis of the beetle's elytra

    Cultural Challenges for L2 Communication Among Persian Migrants in Australia

    Full text link
    This chapter addresses some of the challenges that Iranian migrants encounter in their L2 oral communication in Australia, and how they deal with them. The challenges addressed in this chapter include speakers’ reconstruction of identity, power dynamics, and critical thinking. Persian concepts such as zaher (appearance) and baten (inner self) (Beeman in Int J Sociol Lang 148: 31–57, 1986) as well as nationalistic attitude via concepts like ta’sob/ghairat ‘emotional prejudice’ that influence the above challenges are discussed. These concepts are analyzed in light of Bourdieu’s (Language and Symbolic Power. Harvard University Press, Cambridge, MA, 1991) linguistic capital and Foucault’s notion of power (1994), by employing Fairclough’s (Essential Works of Foucault 1954–1984. Vol. 3, Power. Penguin, London, pp. 1–89, 2013) critical discourse analysis (CDA) approach which posits that linguistic choices exhibit cultural and political overtones, which entangled with power dynamics can either enable L2 communicators, or hamper their performance. The data analyzed come from 12 Iranian male-female migrants’ interview sessions about their lived experiences, including their settlement, migrant English classes, and workplace, in Australia. Results have revealed that many participants wished they had the expressive power in L2 to boast about Iran’s glorious past and Persian Empire. The data have further revealed the participant’s general agreeability to Australians’ open-mindedness that helped them build on their critical thinking in the new context
    corecore