244 research outputs found

    Platinum-(IV)-derivative satraplatin induced G2/M cell cycle perturbation via p53-p21(waf1/cip1)-independent pathway in human colorectal cancer cells

    Get PDF
    Platinum-(IV)-derivative satraplatin represents a new generation of orally available anti-cancer drugs that are under development for the treatment of several cancers. Understanding the mechanisms of cell cycle modulation and apoptosis is necessary to define the mode of action of satraplatin. In this study, we investigate the ability of satraplatin to induce cell cycle perturbation, clonogenicity loss and apoptosis in colorectal cancer (CRC) cells.Platinum-(IV)-derivative satraplatin represents a new generation of orally available anti-cancer drugs that are under development for the treatment of several cancers. Understanding the mechanisms of cell cycle modulation and apoptosis is necessary to define the mode of action of satraplatin. In this study, we investigate the ability of satraplatin to induce cell cycle perturbation, clonogenicity loss and apoptosis in colorectal cancer (CRC) cells

    Cyclin D1, cyclin E, and p21 have no apparent prognostic value in anal carcinomas treated by radiotherapy with or without chemotherapy

    Get PDF
    The purpose of this study was to assess the potential prognostic and/or predictive value of the expression of cyclin D1, cyclin E, and p21 protein in a series of 98 anal carcinomas (T1-4, N0-3) treated by radiotherapy with (51) or without (47) chemotherapy in one institution. Correlation with Mib1 index and p53 expression was also investigated. Median follow-up for surviving patients was 124 months (range: 30-266). Immunohistochemical staining was performed on pretreatment biopsies, applying a standard ABC technique for cyclin D1 (clone DSC6, DAKO, 1 : 300), cyclin E (clone 13A3, Novocastra, 1 : 100), p21(WAF/CIP1) (clone SX118, DAKO, 1 : 50), p53 (clone DO7, DAKO, 1 : 200), and Mib1 (Ki-67, Dianova, 1 : 20). Tumours were classified into low- or high-expression groups according to the expression level of the protein considered. High expression was found in 51% of tumours for cyclin E, in 33.7% for cyclin D1, and in 65% for p21. None of those factors were significantly associated with clinical variables such as advanced T or N categories. In a monovariate analysis, advanced T and N categories and longer overall treatment time were the only variables that correlated significantly with low rate of local control (LC) and disease-free survival. However, in a subgroup analysis, high p21 expression correlated with a trend for significantly higher 5-year LC (87 vs 68%, P=0.07) in the N0 patients. The results of this study suggest that the cell-cycle proteins investigated are unlikely to be clinically useful in predicting treatment response or prognosis in patients with anal carcinomas

    Real-time RT–PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer

    Get PDF
    This study assessed the ability of real-time reverse transcription–polymerase chain reaction (RT–PCR) analysis to detect disseminated epithelial cells (DEC) in peripheral blood (PB) and bone marrow (BM) of patients with breast cancer (BC). Detection of DEC in BM is an obvious choice in BC, but blood sampling is more convenient. The aim of this study was to evaluate whether the detection of DEC in either PB or BM predicts overall survival (OS). Peripheral blood and BM samples were collected from 148 patients with primary (stage M0, n=116/78%) and metastatic (stage M+, n=32/21%) BC before the initiation of any local or systemic treatment. Peripheral blood of healthy volunteers and BM of patients with a nonmalignant breast lesion or a haematological malignancy served as the control group. Disseminated epithelial cells was detected by measuring relative gene expression (RGE) for cytokeratin-19 (CK-19) and mammaglobin (MAM), using a quantitative RT–PCR detection method. The mean follow-up time was 786 days (+/− 487). Kaplan–Meier analysis was used for predicting OS. By taking the 95 percentile of the RGE of CK-19 (BM: 26.3 and PB: 58.7) of the control group as cutoff, elevated CK-19 expression was detected in 42 (28%) BM samples and in 22 (15%) PB samples. Mammaglobin expression was elevated in 20% (both PB and BM) of the patients with BC. There was a 68% (CK-19) and 75% (MAM) concordance between PB and BM samples when classifying the results as either positive or negative. Patients with an elevated CK-19 or MAM expression in the BM had a worse prognosis than patients without elevated expression levels (OS: log-rank test, P=0.0045 (CK-19) and P=0.025 (MAM)). For PB survival analysis, no statistical significant difference was observed between patients with or without elevated CK-19 or MAM expression (OS: log-rank test, P=0.551 (CK-19) and P=0.329 (MAM)). Separate analyses of the M0 and M+ patients revealed a marked difference in OS according to the BM CK-19 or MAM status in the M+ patient group, but in the M0 group, only MAM expression was a prognostic marker for OS. Disseminated epithelial cells, measured as elevated CK-19 or MAM mRNA expression, could be detected in both PB and BM of patients with BC. Only the presence of DEC in BM was highly predictive for OS. The occurrence of DEC in the BM is probably less time-dependent and may act as a filter for circulating BC cells. The use of either larger volumes of PB or performing an enrichment step for circulating tumour in blood cells might improve these results

    Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells

    Get PDF
    Cellular functions accompanying establishment of premature senescence in methotrexate-treated human colon cancer C85 cells are deciphered in the present study from validated competitive expression microarray data, analyzed with the use of Ingenuity Pathways Analysis (IPA) software. The nitrosative/oxidative stress, inferred from upregulated expression of inducible nitric oxide synthase (iNOS) and mitochondrial dysfunction-associated genes, including monoamine oxidases MAOA and MAOB, β-amyloid precursor protein (APP) and presenilin 1 (PSEN1), is identified as the main determinant of signaling pathways operating during senescence establishment. Activation of p53-signaling pathway is found associated with both apoptotic and autophagic components contributing to this process. Activation of nuclear factor κB (NF-κB), resulting from interferon γ (IFNγ), integrin, interleukin 1β (IL-1β), IL-4, IL-13, IL-22, Toll-like receptors (TLRs) 1, 2 and 3, growth factors and tumor necrosis factor (TNF) superfamily members signaling, is found to underpin inflammatory properties of senescent C85 cells. Upregulation of p21-activated kinases (PAK2 and PAK6), several Rho molecules and myosin regulatory light chains MYL12A and MYL12B, indicates acquisition of motility by those cells. Mitogen-activated protein kinase p38 MAPK β, extracellular signal-regulated kinases ERK2 and ERK5, protein kinase B AKT1, as well as calcium, are identified as factors coordinating signaling pathways in senescent C85 cells

    Loss of functional pRB is not a ubiquitous feature of B-cell malignancies

    Get PDF
    Human cancers frequently sustain genetic mutations that alter the function of their G1 cell cycle control check point. These include changes to the retinoblastoma gene and to the genes that regulate its phosphorylation, such as the cyclin-dependent kinase inhibitor p16(INK4a). Altered expression of retinoblastoma protein (pRb) is associated with non-Hodgkin's lymphoma, particularly centroblastic and Burkitt's lymphomas. pRb is expressed in normal B-cells and its regulatory phosphorylation pathway is activated in response to a variety of stimuli. Since human B-lymphoma-derived cell lines are often used as in vitro model systems to analyse the downstream effects of signal transduction, we examined the functional status of pRb in a panel of human B-cell lines. We identified eleven cell lines which express the hyperphosphorylated forms of pRb. Furthermore, we suggest that the pRb protein appears to be functional in these cell lines

    CDK2 and PKA Mediated-Sequential Phosphorylation Is Critical for p19INK4d Function in the DNA Damage Response

    Get PDF
    DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, β-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with 32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage

    Histone Deacetylase Inhibitors Downregulate Checkpoint Kinase 1 Expression to Induce Cell Death in Non-Small Cell Lung Cancer Cells

    Get PDF
    Background: Histone deacetylase inhibitors (HDACis) are promising anticancer drugs; however, the molecular mechanisms leading to HDACi-induced cell death have not been well understood and no clear mechanism of resistance has been elucidated to explain limited efficacy of HDACis in clinical trials. Methods and Findings: Here, we show that protein levels of checkpoint kinase 1 (Chk1), which has a major role in G2 cell cycle checkpoint regulation, was markedly reduced at the protein and transcriptional levels in lung cancer cells treated with pan-and selective HDACis LBH589, scriptaid, valproic acid, apicidin, and MS-275. In HDACi treated cells Chk1 function was impaired as determined by decreased inhibitory phosphorylation of cdc25c and its downstream target cdc2 and increased expression of cdc25A and phosphorylated histone H3, a marker of mitotic entry. In time course experiments, Chk1 downregulation occurred after HDACi treatment, preceding apoptosis. Ectopic expression of Chk1 overcame HDACiinduced cell death, and pretreating cells with the cdc2 inhibitor purvalanol A blocked entry into mitosis and prevented cell death by HDACis. Finally, pharmacological inhibition of Chk1 showed strong synergistic effect with LBH589 in lung cancer cells. Conclusions: These results define a pathway through which Chk1 inhibition can mediate HDACi-induced mitotic entry and cell death and suggest that Chk1 could be an early pharmacodynamic marker to assess HDACi efficacy in clinical samples

    Chemosensitization by phenothiazines in human lung cancer cells: impaired resolution of γH2AX and increased oxidative stress elicit apoptosis associated with lysosomal expansion and intense vacuolation

    Get PDF
    Chemotherapy resistance poses severe limitations on the efficacy of anti-cancer medications. Recently, the notion of using novel combinations of ‘old' drugs for new indications has garnered significant interest. The potential of using phenothiazines as chemosensitizers has been suggested earlier but so far our understanding of their molecular targets remains scant. The current study was designed to better define phenothiazine-sensitive cellular processes in relation to chemosensitivity. We found that phenothiazines shared the ability to delay γH2AX resolution in DNA-damaged human lung cancer cells. Accordingly, cells co-treated with chemotherapy and phenothiazines underwent protracted cell-cycle arrest followed by checkpoint escape that led to abnormal mitoses, secondary arrest and/or a form of apoptosis associated with increased endogenous oxidative stress and intense vacuolation. We provide evidence implicating lysosomal dysfunction as a key component of cell death in phenothiazine co-treated cells, which also exhibited more typical hallmarks of apoptosis including the activation of both caspase-dependent and -independent pathways. Finally, we demonstrated that vacuolation in phenothiazine co-treated cells could be reduced by ROS scavengers or the vacuolar ATPase inhibitor bafilomycin, leading to increased cell viability. Our data highlight the potential benefit of using phenothiazines as chemosensitizers in tumors that acquire molecular alterations rendering them insensitive to caspase-mediated apoptosis
    • …
    corecore